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 Because of its capability to convert organic wastes into renewable energy and into some components useful for 
agriculture, the anaerobic digestion technology can reduce greenhouse gas emissions in the atmosphere and the 
pollution. Thus, anaerobic digestion can contribute to achieving some of sustainable development goals. 
Consequently, many theoretical and empirical approaches are proposed for estimating, predicting and optimizing 
the methane produced by anaerobic digestion. In this context, the logistic function is a mathematical model that 
can be used to approximate empirical data of the temporal methane production in anaerobic digestion. In a 
previous paper, under some appropriate approximations, we have derived from AM2 model a single analytical 
expression in a form of a logistic function for describing the evolution of methane production in batch 
bioreactors. In the present paper, by comparing the three standard parameters associated with the classical 
empirical logistic function with that of the derived one from AM2 model; some relationships between them have 
been established. These relations are exploited for estimating some coefficients and parameters of AM2 model 
with respect to empiric logistic function parameters and vice-versa. Moreover, this possibility enables more 
qualitative insight about the evolution of the methane production and the influence of AM2 parameters and 
coefficients as well as their interaction over its processes. 
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INTRODUCTION 

It is well admitted nowadays that the rapid growth of the 
world population under the pressure of modern economic 
development is continually and considerably increasing the 
production of organic wastes. As a consequence, without 
appropriate management policies, organic wastes can be 
responsible of methane emissions, land degradation, water 
contamination, pollution, diseases, ecosystem destruction, 
etc. (Pawlita-Posmyk & Wzorek, 2018; Valenti et al., 2023). 
This situation heavily accentuates the climate change issues 
through the emission of greenhouse gases into the 
atmosphere. The worldwide stress of water can also be 
mentioned as a crucial issue and thus wastewater treatment is 
consequently an important topic related to waste management 
policies. Therefore, some recent promising research are under 
progress concerning wastewater treatments by using relevant 
techniques such as microbial metabolites in the activated 
sludge that govern membrane bioreactors (Sepehri & 
Sarrafzadeh, 2018, 2019; Sepehri et al., 2020). 

For these reasons, anaerobic digestion technology is 
mentioned by the United Nations in the management policy of 

organic wastes. It is among important technologies that can 
participate to reduce the impact of the climate change issues 
and thus contributes to achieving some sustainable 
development goals (Piadeh et al., 2023).  

In this context, an accurate estimation, prediction and 
optimization of methane generation from anaerobic 
bioreactors is of paramount importance. In fact, since the 
seventies, the production of methane as a renewable energy 
resource generated by anaerobic bioreactors using organic 
wastes started attracting attention. In the same way, many 
research efforts have followed proposing models to estimate 
the methane production generated from anaerobic digesters. 
According to the literature review, different models have been 
proposed to tackle this problem based on various approaches 
(Emebu et al., 2022). 

One very important approach is theory-based leading to 
mathematical expressions describing the processes acting 
inside the bioreactors. Some of such representative models are 
ADM1 and one of its derivative named AM2 (Ozgun, 2019; Yu 
et al., 2013). In particular, AM2 model reveals to be more 
practical than ADM1 and is largely used to study anaerobic 
digesters with different substrates in various conditions 
(Zaatri & Kelaiaia, 2020). But theory-based models can be 
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mathematically complex as they are usually composed of a set 
of nonlinear and coupled systems of differential equations. 
Thus, they cannot provide single explicit analytic expressions 
for estimating the evolution of the methane production, which 
is the final product. Instead, they are much more useful for 
simulating the evolution of the methane production processes. 
Another issue is that it is not always easy to identify and 
accurately estimate from experiments the many coefficients 
and parameters involved in these complex models (Attar & 
Haugen, 2019; Bernard et al., 2001; Zaatri & Kelaiaia, 2020).  

To overcome this mathematical complexity and in parallel 
with the theory-based approach, some simplistic empirical-
driven models have been proposed. These models intend to 
estimate the methane production by means of single explicit 
analytic mathematical functions that are assumed to fit their 
dynamic experimental profiles. For this purpose, many 
functions have been proposed namely Richard function, 
logistic function, Gompertz function, transfer function, etc. 
(Pererva et al., 2020; Zhang et al., 2021). Generally, these 
empirical-driven models involve less parameters compared to 
the theory-based ones. Their parameters are identified and 
estimated from graphical profiles of the evolution of the 
methane production (Opurum, 2021; Pererva et al., 2020).  

Similarly, by adopting some assumptions and 
mathematical simplifications, some simplistic theory-based 
models have leaded to single analytic functions that met 
empirical-driven models. In fact, to be simplest, this type of 
models use different methods: such as statistical, enzymatic, 
kinetic, chemical, etc. (Dittmer et al., 2021; López-Aguilar et 
al., 2021). It was obtained by considering the steady state cases 
(Bernard et al., 2001), by considering the cell biomass as 
constant (Moharir et al., 2020), by using simple growth laws for 
bacteria, etc. (Bernard et al., 2001; Simeonov, 1999) or by 
adopting appropriate simplifications (Gouveia et al., 2022). 
But, because of their simplicity, this type of models cannot 
reflect the sensitivity of the hidden parameters influencing 
and governing the complex processes of real biotechnological 
systems.  

On the other side, because of the nonlinearity of the 
anaerobic digestion processes and the sensitivity to their 
parameters and operating conditions, the simple traditional 
empirical-driven models may not ensure efficient performance 
for a generalized prediction of biogas production (Amran et al., 
2024; Rutland, 2023). Therefore, some models inspired from 
Artificial Intelligence and modern computation techniques 
have recently emerged as alternatives providing better 
performances for biogas estimation, prediction, and even for 
real-time control and monitoring of bioreactors (Ling et al., 
2024; Swami et al., 2023). Some of these models are machine-
learning-based requiring a large amount of data. They include 
artificial neural networks and statistical learning models such 
as random forest, extreme gradient boosting, and support 
vector machine (Cruz et al., 2022). But, although ML models 
may provide better performance than classic empiric-models, 
they may suffer from certain limitations and challenges. These 
models are represented by black-boxes and their accuracy 
depends on the size of the data sets used to process the 
training and the validation phases. They also depend on the 
selected structure of the used ML model and from the 
bioreactor under consideration. These facts make them not 

largely generalizable to other bioreactors operating possibly 
under different conditions. In addition, most applications are 
still lab-based and performed in batch flow rather than 
continuous flow bioreactors (Onu et al., 2023; Rutland, 2023). 
Finally, ML models are interesting but are still under progress 
and the comparison of their performances is not yet 
sufficiently mature (Amran et al., 2024; Ling et al., 2024). 
Finally, in the context of this research, they do not provide 
single analytic expressions for the evolution of the methane 
production and simple methods for identifying the parameters 
characterizing the processes of methane production. 

As a conclusion, according to our critical analysis of the 
previous literature review, we did not find models of single 
analytical expressions that describe the evolution of the 
methane production while holding the many parameters and 
coefficients used in the complex models representing at least 
two processes such as those involved in AM2 model such as 
acidogenic and methanogenic processes. On the other side, the 
used parameters are usually limited, model dependant, and, 
are not always easy to estimate. Thus, they do not provide 
insight concerning the influence of the used parameters over 
the evolution of the methane production. 

In effect, as a summary, firstly, the complex theory-based 
models such as AM1 and AM2 are mainly useful for simulation. 
Secondly, the empirical-driven models provide single 
analytical expressions but do not hold enough parameters. In 
addition, there parameters may not have direct meanings 
related to microbiological activities. Thirdly, some simplified 
theory-based models that have derived single analytical 
expressions miss most microbiological parameters and yield 
coefficients. Fourthly, the ML-based models do not provide 
single expressions as they are black-boxes. 

Therefore, there is a need for new models derived from the 
theory-based approach that can hold some microbiological 
parameters and yield coefficients, but, at the same time, they 
may still be comparable to empiric-driven models 
representable with single analytic functions. Thus, according 
to the author’s review of the literature, this vision seems to 
have not sufficiently investigated and that is why probably, 
there is almost no references corresponding precisely to this 
topic. However, in response to this issue, we have previously 
proposed two contributions. By adopting some appropriate 
mathematical simplifications, two single analytical 
expressions derived from AM2 model while holding most of its 
parameters have been proposed (Zaatri, 2021a, 2021b). In 
particular, one of these research works (Zaatri, 2021b) has 
proposed single analytical expressions for the evolution of the 
bacteria’s and the methane production in batch AD. The 
expressions are derived from AM2 model with its main 
parameters and are also match the profile of logistic functions. 

Actually, the main objective of the present research work 
aims to exploit the proposed model cited in Zaatri (2021b). Our 
original contribution is the establishing of relations between 
the experimental parameters of the logistic functions 
concerning the evolution of the bacteria’ and the methane 
production with those of the theoretical ones related to AM2 
model. Then, from these relations, some parameters of AM2 
can be estimated in function of the experimental ones and 
vice-versa. This also leads to more qualitative and quantitative 
insight concerning the evolution of the processes leading to 



 Zaatri / European Journal of Sustainable Development Research, 8(3), em0260 3 / 10 

the cumulated methane production as well as to the influence 
of AM2 parameters over these processes.  

MATHEMATICAL FORMULATION OF AM2 
MODEL  

In this section, we briefly present the formulation of AM2 
model, which belongs to the theory-based approach for 
estimating the cumulated methane generated by anaerobic 
digestion in the case of batch bioreactors. This estimation will 
be obtained via numerical simulations according to the 
adopted mathematical formulation. The obtained results 
provided by this formulation will serve as a reference, at least 
qualitatively, to compare with those of the derived data-driven 
model, which corresponds to a logistic function.  

AM2 model considers the anaerobic digestion as 
constituted only of two main steps leading to the production 
of a biogas that contains the methane (Bernard et al., 2001). 
The first step involves the acidogenic bacteria to decompose 
the organic substrate into volatile fatty acids (VFA) and CO2. 
Then, the second step involves the methanogenic bacteria to 
generate CO2 and methane. S1 represents the concentration of 
a soluble carbonaceous substrate while S2 represents the 
concentration of VFA. X1 and X2 represent, respectively, the 
concentrations of acidogenic and methanogenic bacteria 
populations. We note that as we are principally interested in 
the estimation of the cumulated methane, and since the 
general set of equations of AM2 model can be decoupled, 
therefore the alkalinity, the pH, the flow of CO2, or the partial 
pressure of the gases will not be considered (Vargas et al., 
2019). On the other hand, in this study, we are concerned with 
the analysis of batch reactors, then the mathematical model is 
reduced to a set of four differential equations: 

 𝑑𝑋1

𝑑𝑡
= 𝜇1𝑋1, (1) 

 𝑑𝑋2

𝑑𝑡
= 𝜇2𝑋2, (2) 

 𝑑𝑆1

𝑑𝑡
= −𝑘1𝜇1𝑋1, (3) 

 𝑑𝑆2

𝑑𝑡
= 𝑘2𝜇1𝑋1 − 𝑘3𝜇2𝑋2, (4) 

where k1, k2, k3, and k4 are yield coefficients associated with the 
reactions. The specific reaction rates are of monod type µ1 for 
acidogenesis and haldane type µ2 for methanogenesis bacteria:  

 𝜇1 = 𝜇1𝑚𝑎𝑥
𝑆1

𝐾𝑆1+𝑆1
, (5) 

 𝜇2 = 𝜇2𝑚𝑎𝑥
𝑆2

𝐾𝑆1+𝑆2+
𝑆2
2

𝐾𝑖2

, (6) 

where 𝜇1𝑚𝑎𝑥  is the maximal growth rate and KS1 is the constant 
of half-saturation of the acidogenic biomass. 𝜇2𝑚𝑎𝑥 is the 
maximal growth rate, KS2 is the constant of saturation and Ki2, 
the constant of inhibition of the methanogenesis bacteria. 

Four initial conditions X1(0), S1(0), X2(0), and S2(0) have to be, 
respectively, associated to the set of differential equations. 

According to this model, the methane flow can be deduced 
from: 

 𝑄𝐶𝐻4(𝑡) = 𝑘4𝜇2𝑋2(𝑡), (7) 

where k4 is the yield coefficient for the methane production. 
The cumulative methane V(t) generated over a period of time t 
is deduced, as follows:  

 𝑉(𝑡) = 𝑘4𝑋2(𝑡). (8) 

This model can simulate more or less adequately the 
functioning of the anaerobic digesters and predict the 
produced methane more or less accurately depending on many 
factors such as the cpmposition of the substrates, the 
operating conditions and the estimation of the involved 
parameters. For the model under interest, there are nine 
parameters to be identified, five of them are the related to the 
growth processes (μ1max, KS1, μ2max, KS2, and Ki2) and four of them 
are the yield parameters (k1, k2, k3, and k4). There are four initial 
conditions that (X1(0), S1(0), X2(0), and S2(0)) could be 
measured or estimated depending on the bioreactor design. 

The methods of parameters identification consider the 
bioreactor in the context of system control and use large sets 
of experimental data. Then, the parameters are estimated 
according to criteria’s that should minimize functions of errors 
between the theoretical and the experimental values (Attar & 
Haugen, 2019; Bernard et al., 2001).  

LOGISTIC FUNCTION AS A MODEL FOR 
METHANE PRODUCTION 

In this section, we present the logistic function, which is 
used for estimating the cumulated methane generated by 
anaerobic digestion and which belongs to the data-based 
approach. The logistic function is a mathematical expression, 
which is used to modeling many domains of applications such 
as biomathematics, chemistry, physics, demography, 
economics, etc. In particular, it is used to study a population 
growth under conditions of limited resources (Di Crescenzo & 
Paraggio, 2019).  

The logistic equation emerges as a solution of a first order 
differential Eq. (9), where the function X(t) represent the 
growth population, given a growth rate, c, and a carrying 
capacity, a.  

 𝑑𝑋

𝑑𝑡
= 𝑐𝑋 (1 −

𝑋

𝑎
). (9) 

It has also associated to an initial value that is the initial 
population: X(0)=X0. 

The logistic function is usually expressed in the following 
two forms, where the function is represented by X(t) while t is 
the independent variable and (a, b, and c) or (a, β, and c) are its 
parameters. 

The first expression of the logistic function is, as follows:  
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 𝑋(𝑡) =
𝑎

1+𝑏×exp⁡(−𝑐𝑡)
. (10) 

The second form is also known as Ratkowsky expression is, 
as follows:      

 𝑋(𝑡) =
𝑎

1+exp(𝛽−𝑐𝑡)
, (11) 

with b=eβ and b>0 and c>0.  
The shape of this function increases for t≥0 and has a 

horizontal asymptote when t tends to an infinite value that is 
the capacity=a (Figure 1). It has also an inflexion point with 
coordinates (tp, xp). It corresponds to the time tp, where Xp 
reaches the half value of the carrying capacity. 

Once a graphical experimental profile of the logistic 
function X(t) is given, its parameters (a, b, and c) can be 
determined based on some particular points from the 
experimental curve. The first coefficient to be determined is 
the carrying capacity a that corresponds to the asymptotic 
value for time to infinite time. In Figure1, it is about unity. 
The second parameter b is related to the initial value of the 
logistic function X0 and is determined by from the following 
expression: 

 𝑏 =
𝑎−𝑋0

𝑋0
. (12) 

The growth rate parameter c is deduced from the 
coordinates of the inflexion point. It corresponds to the time 
tp, where Xp reaches the half value of the carrying capacity. 
Thus, when Xp=a/2, the time is tp=(1/c)log(b), and then: 

 𝑐 =
1

𝑡𝑝
log⁡(𝑏). (13) 

To give meanings to the parameters of the logistic function 
modeling cumulated methane production by microbiological 
activities, a specific re-parameterization is defined in the 
following third form (Opurum, 2021): 

 𝑋𝑡 =
𝐴

(1+exp(−
4𝑣𝑚𝑎𝑥

𝐴
)(𝑡−𝜆)+2)

, (14) 

where for instance X(t) represents the cumulated methane 
produced over a time duration t, A the maximum product, vmax 
is the maximum production rate, and λ the lag phase time.  

EVOLUTION OF ACIDOGENS BACTERIA AS 
LOGISTIC FUNCTION 

Approximation of Evolution of Bacteria X1(t) by a 
Logistic Function  

The dynamic evolution of bacteria X1(t) can be derived from 
combining Eq. (1) and Eq. (5), which leads to the following 
differential equations (Zaatri, 2021b):  

 
𝑑𝑋1

𝑑𝑡
= 𝜇1𝑚

𝑆1

𝑆1+𝐾𝑆1
𝑋1 = 𝜇1𝑚

(−𝑘1𝑋1+𝛼)𝑋1

(−𝑘1𝑋1+𝐾𝑆1+𝛼)𝑋1
, (15) 

with α=S10+k1X10. This equation can be solved and expressed as 
an algebraic equation but without explicit solution in function 
of time.  

However, it can be expressed in the inverse form: t=g(X1) 
(Zaatri, 2021a). Nevertheless, by considering an 
approximation that is (k1X1<α+KS1), Eq. (15) simplifies such as: 

 
𝑑𝑋1

𝑑𝑡
= 𝜇1𝑚

(−𝑘1𝑋1+𝛼)𝑋1

𝐾𝑆1+𝛼
=

𝛼𝜇1𝑚

𝛼+𝐾𝑆1
(1 −

𝛼

𝑘1
𝑋1)𝑋1. (16) 

One can notice that Eq. (16) corresponds formally to Eq. 
(9), therefore, X1(t) can be expressed as a logistic function, as 
follows:  

 𝑋1(𝑡) =
𝛼

𝑘1

1

(1+
𝑆10

𝑘1𝑋10
exp⁡(−

𝛼𝜇𝑚1
𝛼+𝐾𝑆1

𝑡))
. (17) 

A similar expression has been obtained in Zaatri (2021a) 
with a little difference in the adopted approximation. Eq. (17) 
has the form of a logistic function as in Eq. (10). Comparing the 
obtained theoretical approximated Eq. (17) with assumed 
experimental logistic functions as defined in Eq. (10) and Eq. 
(11) with the parameters (a1, b1, and c1), it gives the following 
relations: 

 𝛼1 =
𝛼

𝑘1
= 𝑋10 +

𝑆10

𝑘1
, 𝑏1 =

𝑆10

𝑘1𝑋10
, 𝑐1 = 𝛼

𝑢𝑚1

(𝛼+𝐾𝑆1)
. (18) 

If we consider the parameterization as defined by Eq. (11), 
it gives the following relations: 

 𝛼1 =
𝛼

𝑘1
= 𝑋10 +

𝑆10

𝑘1
, 𝑏1 = 𝑒𝛽1, 𝑐1 = 𝛼

𝑢𝑚1

(𝛼+𝐾𝑆1)
. (19) 

If again we consider the parameterization as defined by Eq. 
(14), it gives the following relations: 

 𝐴1 = 𝑎1 =
𝛼

𝑘1
= 𝑋10 +

𝑆10

𝑘1
,  

 𝜆1 =
𝛽−2

𝑐1
=

log(𝑏1)−2

𝑐1
=

(log(𝑏1)−2)(𝛼+𝐾𝑆1)

𝛼

1

𝑈𝑚1
, (20) 

 𝑣1𝑚𝑎𝑥 =
𝑎1𝑐1

4
=

𝛼2

4𝑘1(𝛼+𝐾𝑆1)
𝑈𝑚1.  

Inversely,  

 
Figure 1. Logistic function (Source: Author's own elaboration) 
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 α1 = 𝐴1, b1 = 𝑒
4
𝑉1𝑚𝑎𝑥
𝐴1

+2, 𝑐1 = 4
𝑉1𝑚𝑎𝑥

𝐴1
. (21) 

Figure 2 presents the simulation, by means of the software 
Scilab, of X1(t) according to AM2 model, which is the black 
curve. The curve with blue stars represents X1(t) obtained from 
the analytical Eq. (17), which is a logistic function.  

The three remarkable points enabling to extract 
graphically the parameters (a1, b1, and c1) from the supposed 
experimental curve are shown with red circles. The first point 
corresponds to the initial concentration at t=0, which is X10=0.4 
mg/l. The second is the inflection point (tp=9.37 days, X1=0.58 
mg/l). The third one corresponds to the steady state condition 
that is X1inf, which tends to maximal value a1=1.17 mg/l reached 
after about 70 days. By calculations from the given values of 
AM2 model (Um1=0.4 day-1; KS1=72 mg/l; k1=13; X10=0.4 mg/l; 
and S10=10 mg/l); the numerical values of the parameters for 
the three type of logistic functions are (a1=1.17 mg/l; b1=1.92; 
c1= 0.07 day-1). The parameter for the second form are (a1=1.17 
mg/l; β1=0.65; and c1=0.07 day-1). The parameters for the third 
one are (a1=1.17 mg/l; 𝝀1=-19.30; and Vmax=0.02 day-1).  

Comments 

The logistic function obtained in Eq. (17) by 
approximations can help to analyze the dynamic behavior of 
the acetogenic population X1(t) with respect to the 
corresponding AM2 parameters (U1m, KS1, and k1) and the initial 
values (S10 and X10). The comparison of the empiric logistic 
function in Eq. (10), Eq. (11), and Eq. (14) with our 
approximated analytical logistic function in Eq. (17) leads to 
the following remarks.  

All parameters (a1, b1, and c1) depend on the initial 
conditions (S10 and X10). The asymptotic value a1 depends 
linearly on the initial conditions (S10 and X10) and on the yield 
coefficient k1. Thus, the maximal production of acidogenic 
bacteria X1(t) that corresponds to a1 can be increased by 
increasing the initial values of X10, S10, and decreasing k1. The 
intersection of X1(t) with the vertical axis, which is X0 is related 
to b1 and is influenced by the parameters (X10, S10, and k1). Only 
the parameter c1 depends, beside the parameters (X10, S10, and 

k1), on the growth parameters (Um1 and KS1). Therefore, for 
batch bioreactors, by selecting the substrate and bacteria, it 
becomes possible to control the evolution of X1(t). 

However, if we consider the third form of logistic function 
in Eq. (14); then, only A1=a1 depends on the initial values as for 
the other types. But both the lag phase time 𝝀 and the 
maximum production rate Vmax are influenced by the growth 
parameters (Um1 and KS1). These last relations reveals that 𝝀 
depends in an inverse linear way on the maximal growth rate 
(Um1) while Vmax depends on it linearly. 

Identification of AM2 Parameters from Logistic X1(t) 
Profile 

If one considers the parameters (a1, b1, and c1) of a logistic 
function as estimated from experimental data; then, by 
inversing and manipulating Eq. (18), one can infer an 
estimation of some parameters of AM2 model. For instance, by 
assuming that the yield coefficient k1 is determined by any 
means, then, the initial conditions concerning the bacteria’s 
and the substrate (X10 and S10), as well as the parameter of 
growth rate (Um1) can be identified with respect to the 
empirical parameters (a1, b1, and c1):  

 X10 =
𝑎1

1+𝑏1
, S10 = 𝑘1

𝑎1𝑏1

1+𝑏1
, U𝑚1 =

𝐾𝑆1+𝑘1𝑎1

𝑘1

𝑐1

𝑎1
, (22) 

These relations reveals that X10 can be estimated from (a1 

and b1) but S10 and V1 require the determination of k1. 
Moreover, S10 is proportional to k1 while Um1 is inversely 
proportional to k1. In addition, these parameters (X10, S10, and 
Um1) can also be expressed with respect to the biological 
parameters (A1, 𝜆1, and V1max) using relations in Eq. (20) and 
Eq. (21).  

Approximation of Dynamic Degradation of Substrate 
S1(t)  

The dynamic degradation of the substrate S1(t) can be 
derived from combining Eq. (1) and Eq. (3), which leads to the 
following differential equations (Zaatri, 2021b):  

   
 

 

 𝑑𝑆1

𝑑𝑡
= −𝑘1

𝑑𝑋1

𝑑𝑡
. (23) 

By integrating Eq. (23) and replacing X1(t) from Eq. (17), the 
substrate degradation S1(t) can also be derived in the form of a 
logistic function:  

 𝑆1(𝑡) = −𝑘1𝑋1(𝑡) + 𝛼 =
−𝛼

(1+
𝑆10

𝑘1𝑋10
exp⁡(−

𝛼𝜇𝑚1
𝛼+𝐾𝑆1

𝑡))
. (24) 

Figure 3 presents the simulation, by means of the software 
Scilab, of S1(t) according to AM2 model, which is the black 
curve. The curve with blue stars represents S1(t) obtained from 
the analytical expression in Eq. (17), which is related to a 
logistic function via X1(t).  

The three remarkable points enabling to extract 
graphically the parameters (a1S, b1S, and c1S) from the supposed 
experimental curve are shown with red circles. The first point 
corresponds to the initial concentration at t=0, which is S10=10. 

 
Figure 2. Analytical expression of X1(t) as a logistic function 
(Source: Author's own elaboration) 
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The second is the inflection point (tp=9.37 and S1=7.6). The 
third one corresponds to the steady state condition that is S1inf, 
which tends to the minimal value, which is about zero reached 
after about 70 days and which means that the substrate are 
almost completely consumed by the acidogenic bacteria 
populations. 

We notice that since S1(t) is directly linked to the logistic 
function X1(t), then relations in Eq. (16) and Eq. (21) can be 
used to estimate some parameters or group of parameters of 
AM2 model.  

If it is possible to obtain such curve from experimental 
measures, therefor S10, which is the initial substrate can be 
easily measured or estimated from the beginning. 

EVOLUTION OF METHANOGENS 
BACTERIA AS LOGICAL FUNCTION 

From Eq. (2) and Eq. (4) of the differential equations of AM2 
model, we can write: 

 
𝑑𝑋2
𝑑𝑡

= 𝜇2𝑋2 = 𝜇2𝑚𝑎𝑥

𝑆2

𝑆2 +
𝑆2
2

𝐾𝑖2
+ 𝐾𝑆2

𝑋2. (25) 

On the other hand, as shown in paper (Zaatri, 2021b), by 
manipulating and inserting Eq. (1), Eq. (2), and Eq. (4) in Eq. 
(25), we can obtain a nonlinear differential equation of the first 
order on X2(t), which depends on X1(t) via the term f(t) such as: 

 
𝑑𝑋2

𝑑𝑡
= 𝑢𝑚2

(−𝑘3𝑋2+𝑓)𝑋2

((−𝑘3𝑋2+𝑓)+
(−𝑘3𝑋2+𝑓)

2

𝐾12
+𝐾𝑆2)

= 𝑔(𝑋2, 𝑋1), (26) 

with f(t)=k2x1(t)+C and C=S20-k2X10+k3X20.  

One way to provide an analytical solution to Eq. (26) 
consists, as shown in Zaatri (2021b) to make some 
approximations. The first step requires the adoption of a 
simplified grown law for the methanogenic process such as 
Blackman’s model (Blackman, 1911), which is, as follows:  

 𝜇2 =
𝑢𝑚2

𝐾𝑆2
𝑆2. (27) 

This approximation means that the growth law is relatively 
valid at the beginning of the growth process. By adopting this 
approximation; Eq. (25) and Eq. (26) can be written, as follows: 

 𝑑𝑋2(𝑡)

𝑑𝑡
≅ 𝑢𝑚2

𝑆2(𝑡)

𝐾𝑆2
𝑋2 =

𝑢𝑚2

𝐾𝑆2
𝑓(𝑡)𝑋2(𝑡). (28) 

Eq. (28) can be rewritten to match the standard form of 
Bernoulli’s differential equation for the particular case, where 
the coefficient n=2 (Parker, 2020), that is: 

 𝑑𝑦(𝑡)

𝑑𝑡
+ 𝑃(𝑡)𝑦(𝑡) = 𝑄(𝑡)𝑦2(𝑡). (29) 

By identification Eq. (28) to Eq. (29), one gets P(t) and Q(t): 

 𝑃(𝑡) = −
𝑢𝑚2

𝐾𝑆2
(𝐶 + 𝑘2𝑋1(𝑡)), 𝑄(𝑡) = 𝑞0 = −

𝑢𝑚2

𝐾𝑆2
𝑘3. (30) 

The differential Eq. (29) has a general solution (Parker, 
2020): 

 𝑦(𝑡) =
𝑒∫ 𝑃(𝑡)𝑑𝑡

𝑡
0

𝑐0−𝑞0 ∫ 𝑒∫ 𝑃(𝑡)𝑑𝑡
𝑡
0

𝑡

0
𝑑𝑡

. (31) 

To explicit the general solution of Eq. (31), it requires the 
provision of P(t), which means to provide the profile of X1(t). 
Here again, the problem of integrating Eq. (31) is not obvious 
in standard analytical expressions. So, a second approximation 
is made that is to use the expression of a logistic function for 
X1(t) as given by Eq. (17). Then, a third and last simplification 
is necessary and consists of neglecting the terms that vanished 
for relatively large values of time t in the solution of Eq. (28) 
(Zaatri, 2021b). Within these approximations, the evolution of 
the methanogens bacteria can then be amenable in the form of 
a logistic function with respect to AM2 parameters, as follows: 

 𝑋2(𝑡) ≅
𝑝0+𝑝1

𝑞0

1

(1+𝐸1 exp(𝑝0+𝑝1))𝑡
, (32) 

with 𝑝0 = −
𝑢𝑚2

𝐾𝑆2
𝐶 , 𝑝1 = −

𝑢𝑚2

𝐾𝑆2
𝑘2

𝛼

𝑘1
= −

𝑢𝑚2

𝐾𝑆2

𝑘2

𝑘1
(𝑆10 + 𝑘1𝑋10) , 

𝑞0 = −
𝑢𝑚2

𝐾𝑆2
𝑘3, and 𝐸1 =

𝑝0+𝑝1

𝑞0𝑥20(1+𝑏1)
𝑝1
𝑐1

− 1. 

By means of Eq. (32), one can identify the parameters of the 
Logistic function from the experimental data of the 
methanogens bacteria growth profile for any type of the three 
used forms. Using Eq. (10) of the logistic function, one can 
establish the relations between its experimental parameters 
(a2, b2, and c2) with those of AM2 model given by Eq. (32), which 
are: 

 𝑎2 =
𝑝0+𝑝1

𝑞1
=

1

𝑘3
(
𝑘2

𝑘1
𝑆10 + 𝑆20 + 𝑘3𝑋20),  

 
Figure 3. Analytical expression of S1(t) (Source: Author's own 
elaboration) 
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 𝑏2 = 𝐸1 = [
𝑝0+𝑝1

𝑞0

(1+𝑏1)
−
𝑝1
𝑐1

𝑋20
− 1], (33) 

 𝑐2 = −(𝑝0+𝑝1) = (
𝑘2

𝑘1
𝑆10 + 𝑆20 + 𝑘3𝑋20)

𝑢𝑚2

𝐾𝑆2
.  

Figure 4 presents the simulation, by means of the software 
Scilab, of X2(t) according to AM2 model, which is the black 
curve. The curve with blue stars represents X2(t) obtained from 
the analytical Eq. (32), which corresponds to a logistic 
function. 

Given the values of AM2 model concerning the 
methanogen bacteria, which are (Um2=0.4 day-1; KS2=72 mg/l; 
k2=12; k3=22; X20=0.01 mg/l; and S20=2 mg/l), the parameters of 
the logistic function in Eq. (30) can be determined according 
to Eq. (33): a2=0.52 mg/l ; b2=6302.10; c2=0.25 day-1. 

Its three remarkable points enabling to extract graphically 
the parameters (a2, b2, and c2) are shown with red circles. The 
first point corresponds to the initial concentration at t=0, 
which is X20=0.01 mg/l; the second to the inflection point 
(t2p=38.10 days; X2p=0.26 mg/l); and the third one to the steady 
state point is X2inf=0.52 mg/l since t2inf about 70 days. 

Because the initial conditions are arbitrarily chosen, the 
parameter b2 given in Eq. (33) does not necessarily match the 
initial conditions of the differential Eq. (12). However, it 
corresponds to an equivalent initial value X2eq that depends on 
a complex combination of AM2 parameters, as follows: 

 𝑏2 = 𝐸1 = [
𝑝0+𝑝1

𝑞0

(1+𝑏1)
−
𝑝1
𝑐1

𝑋20
− 1], (34) 

where 𝑋2𝑒𝑞 = 𝑋20(1 + 𝑏1)
𝑝1
𝑐1 = 𝑋20(1 +

𝑆10

𝑘1𝑋10
)
𝑝1
𝑐1.   

ESTIMATION OF METHANE PRODUCTION 
BY A LOGISTIF FUNCTION 

Logistic Function Modeling for Cumulated Methane 
Production V(t) 

According to AM2 model, the cumulated methane 
production V(t) is directly proportional to the growth of 
methanogens bacteria X2(t) as in Eq. (8). Derived from Eq. (32), 
the cumulated methane production can be expressed in any of 
the three logistic function in Eq. (10), Eq. (11), and Eq. (14). 
Therefore, it follows:  

 𝑉(𝑡) = 𝑘4𝑋2(𝑡) ≅ 𝑘4
𝑝0+𝑝1

𝑞0
(

1

1+𝐸1exp⁡(𝑝0+𝑝1)𝑡
). (35) 

This expression V(t) corresponds to a logistic function that 
has been used for predicting the cumulative methane 
production by many authors (Di Crescenzo & Paraggio, 2019). 
Let’s compare V(t) of Eq. (35) with the logistic function in the 
following form of Eq. (10): 

 𝑉(𝑡) = 𝑘4
𝑝0+𝑝1

𝑞0
(

1

1+𝐸1 exp(𝑝0+𝑝1)𝑡
) =

𝐴𝑚

(1+𝐵𝑚exp⁡(−
𝐶𝑚
𝑡
))

, (36) 

where V(t) is the methane volume cumulated during time t and 
(Am, Bm, and Cm) are the three parameters that characterize the 
behavior of V(t). They have to be determined via a graphical 
representation profile obtained from a set of experimental 
data. 

Determination of Parameters of Logistic Function V(t) 

By comparing the expressions in both side of Eq. (36), we 
can establish relationships between the parameters of the two 
models. The empirical parameters (Am, Bm, and Cm) expressed 
in terms of the approximate AM2 proposed model can be 
written as: 

 

 𝐴𝑚 = 𝑘4
𝑝0+𝑝1

𝑞0
=

𝑘4

𝑘3
(
𝑘2

𝑘1
𝑆10 + 𝑆20 + 𝑘3𝑋20),  

 
𝐵𝑚 = 𝐸1 = [

𝑝0+𝑝1

𝑞0

(1+𝑏1)
−
𝑝1
𝑐1

𝑋20
− 1] =

1

𝑘3
(
𝑘2

𝑘1
𝑆10 + 𝑆20 +

𝑘3𝑋20)
1

𝑋20
(1 + 𝑏1)

−
𝑝1
𝑐1-1, 

(37) 

 𝐶𝑚 = 𝑝0 + 𝑝1 = (
𝑘2

𝑘1
𝑆10 + 𝑆20 + 𝑘3𝑋20)

𝑢𝑚2

𝐾𝑆2
.  

Figure 5 presents the simulation, by means of the software 
Scilab, of V(t) according to AM2 model, which is the black 
curve. The curve with blue stars represents V(t) obtained from 
the analytical Eq. (35), which is a logistic function. The value 
of the coefficient k4 is assumed to be equal to 75 l2/mg. 

The three remarkable points enabling to graphically 
extract the logistic function parameters (Am, Bm, and Cm) are 
shown with red circles. The inflection point is (t2p=34.38 day-1; 
V2p=19.52 l). The steady state point starts from about t2inf=65 
days and corresponds to the maximum accumulated methane, 
which is about V2inf=39 l. The initial point corresponding to the 
initial accumulation at t=0 does not necessarily match the 

 
Figure 4. Analytical expression of X2(t) as a logistic function 
(Source: Author's own elaboration) 
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initial arbitrary given value related to S20 that is (V0=k4X20=0.75 
l) but correspond to the equivalent initial condition, as shown 
in Eq. (32) that is (V0equ=k4X2equ=0.006 l), which is negligible. 
Based on the parameter values of AM2 model, the logistic 
function parameters are: Am=39.036 l; Bm=2731.715; and 
Cm=0.254 day-1. 

Some Comments About Logistic Function Representing 
Cumulated Methane 

The parameter Am represents the highest value reached by 
the cumulated methane production. According to relation 
(37), it depends on the coefficients (k1, k2, k3, and k4) and on the 
initial values (S10, S20, and X20). Therefore, to increase and 
optimize the methane production in batch reactors, one 
should select the input products and settle the initial 
conditions in the following way. Increase k2 and k4 while 
decreasing k1 and k3. Increase S10, S20, and X20, by selecting the 
nutriment and initial conditions. The parameter Cm represents 
the production rate, according to its expression in Eq. (37), it 
is related to yield coefficients and initial conditions plus the 
growth rate Um and KS2. The evolution of the cumulated 
methane production is then leaded by the initial conditions 
and the growth parameters of the methanogens bacteria. 

If we consider, the modified logistic function Vm(t) in the 
form of Eq. (14), then, Eq. (35) can be written: 

𝑉(𝑡) ≅ 𝑘4
𝑝0+𝑝1

𝑞0
(

1

1+𝐸1 exp(𝑝0+𝑝1)𝑡
) =

𝐴

(1+exp(−
4𝑉𝑚𝑎𝑥

𝐴
)(𝑡−𝜆)+2)

. (
38) 

This re-parameterization involves the maximum methane 
production (A), the duration of the lag phase (λ), and the 
maximum rate of methane production (vmax). By comparing the 
two sides of Eq. (38), the parameters of the modified logistic 
function (A, Vmax, and λ) can be expressed in terms of the 
approximate AM2 model parameters, as follows: 

𝐴 = 𝑘4
𝑝0+𝑝1

𝑞0
=

𝑘4

𝑘3
(𝐶 +

𝑘2

𝑘1
𝑎) =

𝑘4

𝑘3
(𝑆20 + 𝑘3𝑋20 +

𝑘2

𝑘1
𝑆10),  

 𝑉𝑚𝑎𝑥 = −
𝑘4

4

𝑝0+𝑝1
2

𝑞0
=

1

4

𝑘4

𝑘3
(𝐶 +

𝑘2

𝑘1
𝑎)2

𝑢𝑚2

𝐾𝑆2
, (39) 

 𝜆 = 2−log⁡(𝐸1)

𝑝0+𝑝1
=

1

𝑝0+𝑝1
[2 − log⁡(

𝑝0+𝑝1

𝑞0

(1+𝐴1)
−
𝑝1
𝑐1

𝑋20
− 1)].  

Thus, the proposed approach relates the parameters of the 
logistic function (A, Vmax, and λ) with those of AM2 model. 

Identification of AM2 Parameters from Logistic X1(t) 
Profile 

From the possible estimation of parameters (a1, b1, and c1) 
and (a2, b2, and c2) or (Am, Bm, and Cm) from the logistic 
functions, and, assuming for instance that the coefficients ki 
and Ksi are determined by any other means, therefore, by 
inversing Eq. (37), one can estimate the initial conditions 
concerning the bacteria’s and the substrate (X20 and S20) in the 
bioreactor as well as the parameter of growth rate (Um2) such 
as:  

 𝑋20 =
1

𝑘4

𝑎2

1+𝑏2
(1 + 𝑏1)

𝑘2
𝑘1

𝑉2
𝑉1,  

 𝑆20 = −𝑘2
𝑎1𝑏1

1+𝑏1
+

𝑘3

𝑘4

𝑎2

1+𝑏2
(1 + 𝑏1)

𝑘2
𝑘1

𝑉2
𝑉1, (40) 

 𝑢𝑚2 =
𝑘4

𝑘3
𝐾𝑆2

𝑐2

𝑐1
,  

with 𝑉1 =
𝑢𝑚1

𝐾𝑆1
=

(𝐾𝑆1+𝑘1𝑎1)

𝐾𝑆1𝑘1

𝑐1

𝑎1
 and 𝑉2 =

𝑢𝑚2

𝐾𝑆2
=

𝑘4

𝑘3

𝑐2

𝑎2
. 

As a conclusion, Eq. (18) and particularly Eq. (33) as well as 
their inversion establish a link between experimental profile 
and AM2 model. The presented graphical representations 
show that the approximation of AM2 model by a logical 
function is qualitatively relevant. The logistic function profile 
still follow to some extend AM2 model profile and closer 
concerning the three characteristic points, which determine 
the experimental parameters (a1, b1, and c1) and (a2, b2, and c2) 
or (Am, Bm, and Cm). If we consider Eq. (39), they reveal the 
influence of AM2 parameters and their interaction on the 
experimental profile by means of the experimental parameters 
(A, Vmax, and λ). This relations can be added to the strategies of 
identification and estimation of AM2 parameters. 

CONCLUSIONS 

The anaerobic digestion technology is mentioned by the 
United Nations in the policy of the management of organic 
wastes among technologies that contribute to achieving 
sustainable development goals in the future. Considering the 
importance of this technology, we have performed a 
comparative and critical analysis of the literature concerning 
the dynamic models for estimating and predicting the 
methane production generated by anaerobic bioreactors. We 
have noticed the lack for single expressions enabling to 
estimate the evolution of methane production in anaerobic 
bioreactors but holding significant parameters related to at 
least two biologic processes that are the acidogenesis and 
methanogenesis activities such as in AM2 model. There is also 

 
Figure 5. Profile of approximate logistic function derived from 
AM2 model for cumulated methane production (Source: 
Author's own elaboration) 
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a need to determine these parameters based on the evolution 
empirical profile of the acidogenic and methanogen bacteria’s 
populations as well as the methane production.  

To this end, we have exploited a previous work that has 
proposed some expressions derived from AM2 model and that 
meet the profile of the logistic functions for describing the 
dynamic behavior of the acidogenic and methanogen 
bacteria’s populations as well as the cumulative methane 
production in batch bioreactors. Therefore, by comparing the 
parameters of the empirical logistic functions with the logistic 
functions derived from AM2 model; an estimation of AM2 
parameters can be obtained from the empiric profiles of the 
temporal evolution of acidogenic and methanogen bacteria’s 
populations as well as the cumulative methane production in 
batch bioreactors and vice versa.  

The established relationships lead to more insight in the 
processes of methane production by enabling the simulation 
of the influence of most parameters on the cumulated methane 
production.  

A validation of the obtained results has been performed 
through simulation with graphical representation by 
comparing the logistic function derived from AM2 model with 
AM2 itself.  

One relevant future work will concern how to exploit the 
established relations for enhancing the strategies for 
parameters identification and optimization of methane 
production in anaerobic bioreactors. 
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