Abstract
On a global level the building sector consumes about 45.00% of energy consumption, contributes about 40.00% to emission, uses 30.00% of water and impacts the environment by generating 30.00% of waste. Although windows are important components of a building that provide natural lighting and ventilation and establish necessary contact with the external environment necessary for healthy indoor ambient, they permit entry of undesirable solar heat in summer and allow escaping heat from the indoor ambient in cold seasons, which aggravate the building needs for energy and increase its contribution to atmospheric emissions. The present investigation provides a review on research, development, and applications of advanced windows in the building sector. The introduction highlights the importance and contribution of advanced glazing technology to improving energy, comfort, and thermal performance of buildings. The review includes natural illumination and ventilation, thermal comfort and discusses the effects of window to wall ratio on natural illumination and ventilation of windows and façades. The review also covers recent developments in glazed windows and façades including performance enhancements by using reflective solar films, vacuum glazing, windows with filling materials, windows with water flow, window with phase change material, window with stagnant inert gas filling, ventilated windows and façades and windows with aerogel. A special section was also included on smart glazing for windows and façades showing the new tendencies and applications in the building industry. Since commercial programs and open access codes are handy tools for simulation and performance calculations a section is dedicated to these codes. The conclusion section contains the most relevant conclusion of the review as well as future trends in research and developments in the area. The topics included in this review can be helpful for experienced and young researchers, practicing engineers and general readers interested in windows and façades.
License
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Article Type: Review Article
EUR J SUSTAIN DEV RES, Volume 8, Issue 2, 2024, Article No: em0258
https://doi.org/10.29333/ejosdr/14580
Publication date: 06 May 2024
Article Views: 748
Article Downloads: 656
Open Access References How to cite this articleReferences
- Abdelhafez, M. H. H., Aldersoni, A. A., Gomaa, M. M., Noaime, E., Alnaim, M. M., & Ragab, M. A. A. (2023). Investigating the thermal and energy performance of advanced glazing systems in the context of Hail City, KSA. Buildings, 13(3), 752. https://doi.org/10.3390/buildings13030752
- Abundiz-Cisneros, N., Sanginés, R., Rodríguez-López, R., Peralta-Arriola, M., Cruz, J., & Machorro, R. (2020). Novel low-e filter for architectural glass pane. Energy and Buildings, 206, 109558. https://doi.org/10.1016/j.enbuild.2019.109558
- Aburas, M., Soebarto, V., Williamson, T., Liang, R., Ebendorff-Heidepriem, H., & Wu, Y. (2019). Thermochromic smart window technologies for building application: A review. Applied Energy, 255, 113522. https://doi.org/10.1016/j.apenergy.2019.113522
- Acosta, I., Campano, M. A., & Molina, J. F. (2016). Window design in architecture: Analysis of energy savings for lighting and visual comfort in residential spaces. Applied Energy, 168(15), 493-506. https://doi.org/10.1016/j.apenergy.2016.02.005
- Adu, B. (2015). Characterizing water as gap fill for double glazing units [Master’s thesis, Western Kentucky University].
- Aflaki, A., Mahyuddin, N., Awad, Z. A-C. M., & Baharum, M. R. (2014). Relevant indoor ventilation by windows and apertures in tropical climate: A review study. E3S Web of Conferences, 3, 01025. https://doi.org/10.1051/E3SCONF/20140301025
- Aguilar, J.O., Xaman, J., Alvarez, G., Hernandez-Perez, I., & Lopez-Mata, C. (2015). Thermal performance of a double pane window using glazing available on the Mexican market. Renewable Energy, 81, 785-794. https://doi.org/10.1016/j.renene.2015.03.063
- Aguilar-Santana, J. L., Jarimi, H., Velasco-Carrasco, M., & Riffat, S. (2020). Review on window-glazing technologies and future prospects. International Journal of Low-Carbon Technologies, 15, 112-120. https://doi.org/10.1093/ijlct/ctz032
- Aguilar-Santana, J. L., Velasco-Carrasco, M., & Riffat, S. (2020). Thermal transmittance (U-value) evaluation of innovative window technologies. Future Cities and Environment, 6(1), 1-13. https://doi.org/10.5334/fce.99
- Akram, M. W., Hasannuzaman, M., Cuce, E., & Cuce, P. M. (2023). Global technological advancement and challenges of glazed window, facade system and vertical greenery-based energy savings in buildings: A comprehensive review. Energy Built Environment, 4(2), 206-226. https://doi.org/10.1016/j.enbenv.2021.11.003
- Alam, M., Singh, H., Suresh, S., & Redpath, D. A. G. (2017). Energy and economic analysis of vacuum insulation panels (VIPs) used in non-domestic buildings. Applied Energy, 188, 1-8. https://doi.org/10.1016/j.apenergy.2016.11.115
- Allard, F., Dorer, V. B., Feustel, H. E., Garcia, E. R., Grosso, M., Herrlin, M. K., Mingsheng, L., Phaff, H. C., Ultsumi, Y., & Yoshino, H. (1990). Fundamentals of the multizone air flow model. https://www.aivc.org/sites/default/files/membersarea/medias/pdf/Technotes/tn29%20Fundamentals%20of%20comis.Pdf
- Almeida, C. M. R., Ghica, M. E., & Durães, L. (2020). An overview on alumina-silica-based aerogels. Advances in Colloid and Interface Science, 282, 102189. https://doi.org/10.1016/j.cis.2020.102189
- Alwetaishi, M. (2019). Impact of glazing to wall ratio in various climatic regions: A case study. Journal of King Saud University–Engineering Sciences, 31, 6-18. https://doi.org/10.1016/j.jksues.2017.03.001
- Anderson, A.-L., Chen, S., Romero, L., Top, I., & Binions, R. (2016). Thin films for advanced glazing applications. Buildings, 6(3), 37. https://doi.org/10.3390/buildings6030037
- ANSYS. (2022). Engineering simulation software. https://www.ansys.com/
- Aoul, K. A. T., Attoye, D. E., & Ghatrif, L. A. (2019). Performance of electrochromic glazing: State of the art review. IOP Conferences Series: Materials Science and Engineering, 603, 022085. https://doi.org/10.1088/1757-899X/603/2/022085
- Arasteh, D. K., Finlayson, E. U., & Huizenga, C. (1994). Window 4. I: Program description. Lawrence Berkeley National Laboratory. https://eta-publications.lbl.gov/sites/default/files/35298
- Arasteh, H., Maref, W., & Saber, H. H. (2023). Energy and thermal performance analysis of PCM-incorporated glazing units combined with passive and active techniques: A review study. Energies, 16, 1058. https://doi.org/10.3390/en16031058
- Arici, M., & Kan, M. (2014). An investigation of flow and conjugate heat transfer in multiple pane windows with respect to gap width, emissivity and gas filling. Renewable Energy, 75, 249-256. https://doi.org/10.1016/j.renene.2014.10.004
- Ascione, F., De Masi, R. F., Mastrullo, R. M., Ruggiero, S., & Vanoli, G. P. (2017). Experimental investigation and numerical evaluation of adoption of multi-layered wall with vacuum insulation panel for typical mediterranean climate. Energy and Buildings, 152, 108-123. https://doi.org/10.1016/j.enbuild.2017.07.029
- ASHRAE. (2001). Fundamentals handbook. American Society of Heating, Refrigerating and Air Conditioning Engineers.
- ASHRAE. (2017). ASHRAE handbook–Fundamentals. American Society of Heating, Refrigerating and Air Conditioning Engineers.
- Ashrafian, T., & Moazzen, N. (2019). The impact of glazing ratio and window configuration on occupants’ comfort and energy demand: The case study of a school building in Eskisehir, Turkey. Sustainable Cities and Society, 47, 101483. https://doi.org/10.1016/j.scs.2019.101483
- Attia, S., Bilir, S., Safy, T., Struck, C., Loonen, R., & Goia, F. (2018). Current trends and future challenges in the performance assessment of adaptive façade systems. Energy and Buildings, 179, 165-182. https://doi.org/10.1016/j.enbuild.2018.09.017
- Attia, S., Lioure, R., & Declaude, Q. (2020). Future trends and main concepts of adaptive facade systems. Energy Sciene Engineering, 8, 3255-3272. https://doi.org/10.1002/ese3.725
- Baek, S., & Kim, S. (2019). Optimum design and energy performance of hybrid triple glazing system with vacuum and carbon dioxide filled gap. Sustainability, 11, 5543. https://doi.org/10.3390/su11195543
- Baek, S., & Kim, S. (2021). Analysis of the surface temperature and energy performance for the double paned glazing filled with carbon dioxide as an insulating gas. Turkish Journal of Computer and Mathematics Education, 12(6), 617-625. https://doi.org/10.17762/turcomat.v12i6.2056
- Bahri, S. Y., Forment, M. A., Riera, A. S., Moghaddam, F. B., Guerrero, M. J. C., & Garcia, A. M. L. 2022). A literature review on thermal comfort performance of parametric façades. Energy Reports, 8, 120-128. https://doi.org/10.1016/j.egyr.2022.10.245
- Baker, N., & Steemers, K. (1996). LT method 3.0–A strategic energy-design tool for Southern Europe. Energy and Buildingss, 23(3) 251-256. https://doi.org/10.1016/0378-7788(95)00950-7
- Barbosa, S., & Ip, K. (2014). Perspectives of double skin façades for naturally ventilated buildings: A review. Renewable and Sustainable Energy Reviews, 40, 1019-1029. https://doi.org/10.1016/j.rser.2014.07.192
- Berardi, U. (2019). Nanotechnology in eco-efficient construction, materials, processes and applications. In Civil and structural engineering (pp. 395-416). https://doi.org/10.1016/B978-0-08-102641-0.00017-7
- Boutet, M. L., & Hernández, A. L. (2021). Generic proposal for the determination of optimal glazed areas for school buildings in the Northeast Region of Argentina. Energy and Buildings, 243, 110988. https://doi.org/10.1016/j.enbuild.2021.110988
- Brzezicki, M. (2021). A systematic review of the most recent concepts in smart windows technologies with a focus on electrochromics. Sustainability, 13, 9604. https://doi.org/10.3390/su13179604
- Buratti, C., & Moretti, E. (2012). Glazing systems with silica aerogel for energy savings in buildings. Applied Energy, 98, 396-403. https://doi.org/10.1016/j.apenergy.2012.03.062
- Buratti, C., Belloni, E., Merli, F., & Zinzi, M. (2021). Aerogel glazing systems for building applications: A review. Energy and Buildings, 231, 110587. https://doi.org/10.1016/j.enbuild.2020.110587
- Buratti, C., Moretti, E., & Zinzi, M. (2017). High energy-efficient windows with silica aerogel for building refurbishment: Experimental characterization and preliminary simulations in different climate conditions. Buildings, 7(8). https://doi.org/10.3390/buildings7010008
- Calama-González, C. M., León-Rodríguez, Á. L., & Suárez, R. (2019). Day lighting performance of solar control films for hospital buildings in a Mediterranean climate. Energies, 12(3), 489. https://doi.org/10.3390/en12030489
- Cannavale, A. (2020). Chromogenic technologies for energy saving. Clean Technologies, 2, 462-475. https://doi.org/10.3390/cleantechnol2040029
- Cannavale, A., Ayr, U., Fiorito, F., & Martellotta, F. (2020). Smart electrochromic windows to enhance building energy efficiency and visual comfort. Energies, 13, 1449. https://doi.org/10.3390/en13061449
- CAPSOL. (2014). Computer program to calculate multi-zonal transient heat transfer. PHYSIBEL. https://www.physibel.be/download/CapsolManual.pdf
- Carlos, J. S. (2017). Optimizing the ventilated double window for solar collection. Solar Energy, 150, 454-462. https://doi.org/10.1016/j.solener.2017.04.063
- Carlos, J. S., & Corvacho, H. (2013). Ventilated double window for the preheating of the ventilation air comparison of its performance in a northern and a southern European climate. Journal of Renewable Energy, 2013, 290865. https://doi.org/10.1155/2013/290865
- Carlos, J. S., & Corvacho, H. (2015). Evaluation of the performance indices of a ventilated double window through experimental and analytical procedures: SHGC-values. Energy and Buildings, 86, 886-897. https://doi.org/10.1016/j.enbuild.2014.11.002
- Carlos, J. S., & Corvacho, H. (2017). Assessing thermal comfort due to a ventilated double window. IOP Conference Series: Material Science and Engineering, 245, 042004. https://doi.org/10.1088/1757-899X/245/4/042004
- Carlos, J. S., Corvacho, H., Silva, P. D., & Castro-Gomes, J.P. (2012). Heat recovery versus solar collection in a ventilated double window. Applied Thermal Engineering, 37, 258-266. https://doi.org/10.1016/j.applthermaleng.2011.11.027
- Carlucci, F. (2021). A review of smart and responsive building technologies and their classifications. Future Cities and Environment, 7(1) 1-12. https://doi.org/10.5334/fce.123
- Carlucci, S., Causone, F., De Rosa F., & Pagliano, L. (2015). A review of indices for assessing visual comfort with a view to their use in optimization processes to support building integrated design. Renewable and Sustainable Energy Reviews, 47(7) 1016-1033. https://doi.org/10.1016/j.rser.2015.03.062
- Casini, M. (2018). Active dynamic windows for buildings: A review. Renewable Energy, 119, 923-934. https://doi.org/10.1016/j.renene.2017.12.049
- Chen, X., Zhang, X., & Du, J. (2019). Glazing type (colour and transmittance), day lighting, and human performances at a workspace: A full-scale experiment in Beijing. Building and Environment, 153(4), 168-185. https://doi.org/10.1016/j.buildenv.2019.02.034
- Chen, Y., Tong, Z., Wu, W., Samuelson, H., Malkawi, A., & Norford, L. (2019). Achieving natural ventilation potential in practice: Control schemes and levels of automation. Applied Energy, 235, 1141-1152. https://doi.org/10.1016/j.apenergy.2018.11.016
- Choi, H., An, Y., Kang, K., Yoon, S., & Kim, T. (2019). Cooling energy performance and thermal characteristics of a naturally ventilated slim double-skin window. Applied Thermal Engineering, 160, 114113. https://doi.org/10.1016/j.applthermaleng.2019.114113
- Chow, T. T., & Lyu, Y. (2017). Effect of design configurations on water flow window performance. Solar Energy, 155, 354-362. https://doi.org/10.1016/j.solener.2017.06.050
- Chow, T.-T., & Liu, W. (2020). Warm climate performance of water-filled double-glazing with submerged heat exchanger. Sustainable Cities and Society, 58, 102135. https://doi.org/10.1016/j.scs.2020.102135
- Chow, T.-T., Li, C., & Lin, Z. (2011a). The function of solar absorbing window as water-heating device. Building and Environment, 46, 955-960. https://doi.org/10.1016/j.buildenv.2010.10.027
- Chow, T.-T., Li, C., & Lin, Z. (2011b). Thermal characteristics of water-flow double-pane window. International Journal of Thermal Sciences, 50, 140-148. https://doi.org/10.1016/j.ijthermalsci.2010.10.006
- Chow, T-t., Li, C., & Lin, Z. (2010). Innovative solar windows for cooling-demand climate. Solar Energy Materials and Solar Cells, 94(2), 212-220. https://doi.org/10.1016/j.solmat.2009.09.004
- COMSOL. (2022). Software for multiphysics simulation. https://www.comsol.com/
- Costanzo, V., Evola, G., & Marletta, L. (2016). Thermal and visual performance of real and theoretical thermochromic glazing solutions for office buildings. Solar Energy Materials and Solar Cells, 149, 110-120. https://doi.org/10.1016/j.solmat.2016.01.008
- Cotana, F., Pisello, A. L., Moretti, E., & Buratti, C. (2014). Multipurpose characterization of glazing systems with silica aerogel: In-field experimental analysis of thermal-energy, lighting and acoustic performance. Building and Environment, 81, 92-102. https://doi.org/10.1016/j.buildenv.2014.06.014
- Cuce, E. (2014). Development of innovative window and fabric technologies for low-carbon buildings [PhD thesis, The University of Nottingham].
- Cuce, E. (2018). Accurate and reliable U-value assessment of argon-filled double glazed windows: A numerical and experimental investigation. Energy and Buildings, 171, 100-106. https://doi.org/10.1016/j.enbuild.2018.04.036
- Cuce, E., Sher, F., Sadiq, H., Cuce, P. M., Guclu, T., & Besir, A. B. (2019). Sustainable ventilation strategies in buildings: CFD research. Sustainable Energy Technologies and Assessments, 36, 100540. https://doi.org/10.1016/j.seta.2019.100540
- Day, J. K., Futrell, B., Cox, R., Ruiz, S. N., Amirazar, A., Zarrabi, A. H., & Azarbayjani, M. (2019). Blinded by the light: Occupant perceptions and visual comfort assessments of three dynamic daylight control systems and shading strategies. Building and Environment, 154(5) 107-121. https://doi.org/10.1016/j.buildenv.2019.02.037
- De Gracia, A., Castell, A., Navarro, L., Oró, E., & Cabeza, L. F. (2013). Numerical modelling of ventilated facades: A review. Renewable and Sustainable Energy Reviews, 22, 539-549. https://doi.org/10.1016/j.rser.2013.02.029
- DeLaHunt, M. J. E. I. (1958). Suncode-PC, a program user’s manual. https://ecotope-publications-database.ecotope.com/1985_016_SUNCODE-PC.pdf
- DesignBuilder. (2019). Software Ltd. version 5.5.0. https://designbuilder.co.uk
- Ding, X. H. (2020). A brief analysis of energy conservation ways by building materials for ecological architecture. Journal of Power and Energy Engineering, 8, 13-22. https://doi.org/10.4236/jpee.2020.812002
- DOE. (2012). EnergyPlus TM version 8.6 documentation, engineering reference. U.S. Department of Energy. https://energyplus.net/assets/nrelcustom/pdfs/pdfs_v22.1.0/ EngineeringReference.pdf
- DOE. (2022). EnergyPlus TM 8.6. U.S. Department of Energy. https://www.energy.gov/eere/buildings/building-technologies-office
- Dogan, T., & Park, Y. C. (2019). A critical review of day lighting metrics for residential architecture and a new metric for cold and temperate climates. Lighting Research & Technology, 51(2), 206-230. https://doi.org/10.1177/1477153518755561
- Ehms, J. H. N., Oliveski, R. C., Rocha, L. A. O., Biserni, C., & Garai, M. (2019). Phase change materials (PCM) for building envelope applications: A review of numerical models. AIP Conference Proceedings, 2191, 020120. https://doi.org/10.1063/1.5138853
- Eisazadeh, N., Allacker, K., & De Troyer, F. (2019). Impact of window systems on day lighting performance, visual comfort and energy efficiency in patient rooms. In Proceedings of the 16th International Building Performance Simulation Association (pp. 1207-1214). https://doi.org/10.26868/25222708.2019.211185
- El-Eshmawy, A. W. Y. A., DessoqyFaggal, A. A. E., & Eissa, A. M. M. (2021). Conventional and advanced glazing technologies for enhancing thermal and lighting performance. Engineering Research Journal, 171, 1-15. https://doi.org/10.21608/ERJ.2021.193260
- El-Rahman, S. M. A., Esmail, S. I., Khalil, H. B., & El-Razaz, Z. (2020). Sustainable optimization for thermal comfort and building energy efficiency in Cairo. Engineering Research Journal, 166, 18-34. https://doi.org/10.21608/ERJ.2020.135278
- Elshafei, G., Negm, A., Bady, M., Suzuki, M., & Ibrahim, M. G. (2017). Numerical and experimental investigations of the impacts of window parameters on indoor natural ventilation in a residential building. Energy and Buildings, 141, 321-332. https://doi.org/10.1016/j.enbuild.2017.02.055
- Equa Simulation AB. (2018). IDA indoor climate and energy 4.8. https://www.equa.se/en/
- eQUEST. (2012). The Quick energy simulation tool online. http://www.doe2.com/download/equest/eQUESTv3-Overview.pdf
- Escoto, F. J., & Hernández, J. A. (2019). Thickness dimensioning of water flow glazing facades. In Proceeding 7th European Conference Renewable Energy System (pp. 10-12).
- Fahmy, M., Mahmoud, S. A., Olwy, I. M., & Abdelalim, M. (2020). Comparison of occupant thermal comfort with and without passive design for a naturally ventilated educational building: A case study in Cairo, Egypt. IOP Conference Series: Material, Science and Engineering, 974, 012027. https://doi.org/10.1088/1757-899X/974/1/012027
- Fang, Y., & Cho, S. (2019). Design optimization of building geometry and fenestration for day lighting and energy performance. Solar Energy, 191, 7-18. https://doi.org/10.1016/j.solener.2019.08.039
- Fang, Y., Eames, P. C., Norton, B., & Hyde, T. J. (2006). Experimental validation of a numerical model for heat transfer in vacuum glazing. Solar Energy, 80, 564-577. https://doi.org/10.1016/j.solener.2005.04.002
- Fang, Y., Memon, S., Peng, J., Tyrer, M., & Ming, T. (2020). Solar thermal performance of two innovative configurations of air vacuum layered triple glazed windows. Renewable Energy, 150, 167-175. https://doi.org/10.1016/j.renene.2019.12.115
- Fathi, S., & Kavoosi, A. (2021). Effect of electrochromic windows on energy consumption of high-rise office buildings in different climate regions of Iran. Solar Energy, 223, 132-149. https://doi.org/10.1016/j.solener.2021.05.021
- Feng, F., Kunwar, N., Cetin, K., & O’Neill, Z. (2021). A critical review of fenestration/window system design methods for high performance buildings. Energy and Buildings, 248, 111184. https://doi.org/10.1016/j.enbuild.2021.111184
- Foroughi, R., Asadi, S., & Khazaeli, S. (2021). On the optimization of energy efficient fenestration for small commercial buildings in the United States. Journal of Cleaner Production. 283, 124604. https://doi.org/10.1016/j.jclepro.2020.124604
- G. B. Studio. (2008). Autodesk Green Building Studio. https://gbs.autodesk.com/gbs
- Gao, T., Ihara, T., Grynning, S., Jelle, B. P., & Lien, A. G. (2016). Perspective of aerogel glazings in energy efficient buildings. Building and Environment, 95, 405-413. https://doi.org/10.1016/j.buildenv.2015.10.001
- Gao, T., Jelle, B. P., & Gustavsen, A. (2016). Building integration of aerogel glazings. Procedia Engineering, 145, 723-728. https://doi.org/10.1016/j.proeng.2016.04.090
- Gao, T., Jelle, B. P., Ihara, T., & Gustavsen, A. (2014). Insulating glazing units with silica aerogel granules: The impact of particle size. Applied Energy, 128, 27-34. https://doi.org/10.1016/j.apenergy.2014.04.037
- Garnier, C., Muneer, T., & McCauley, L. (2015). Super insulated aerogel windows: Impact on day lighting and thermal performance. Building and Environment, 94, 231-238. https://doi.org/10.1016/j.buildenv.2015.08.009
- Ghosh, A. (2023). Diffuse transmission dominant smart and advanced windows for less energy-hungry building: A review. Journal of Building Engineering, 64, 105604. https://doi.org/10.1016/j.jobe.2022.105604
- Ghosh, A., & Norton, B. (2018). Advances in switchable and highly insulating autonomous (self powered) glazing systems for adaptive low Energy and Buildingss. Renewable Energy, 126, 1003-1031. https://doi.org/10.1016/j.renene.2018.04.038
- Ghosh, A., Norton, B., & Duffy, A. (2017). Effect of sky clearness index on transmission of evacuated (vacuum) glazing. Renewable Energy, 105, 160-166. https://doi.org/10.1016/j.renene.2016.12.056
- Gloriant, F., Tittelein, P., Joulin, A., & Lassue, S. (2015). Modeling a triple-glazed supply-air window. Building and Environment, 84, 1-9. https://doi.org/10.1016/j.buildenv.2014.10.017
- Goia, F. (2016). Search for the optimal window-to-wall ratio in office buildings in different European climates and the implications on total energy saving potential. Solar Energy, 132, 467-492. https://doi.org/10.1016/j.solener.2016.03.031
- Goia, F., Perino, M., & Serra, V. (2013). Improving thermal comfort conditions by means of PCM glazing systems. Energy and Buildings, 60, 442-452. https://doi.org/10.1016/j.enbuild.2013.01.029
- Gosselin, J. R., & Chen, Q. (2008). A computational method for calculating heat transfer and airflow through a dual-airflow window. Energy and Buildingss, 40(4), 452-458. https://doi.org/10.1016/j.enbuild.2007.03.010
- Granqvist, C. G., Lansåker, P. C., Mlyuka, N. R., Niklasson, G. A., & Avendaño, E. (2009). Progress in chromogenics: New results for electro chromic and thermo chromic materials and devices. Solar Energy materials and Solar Cells, 93(12), 2032-2039. https://doi.org/10.1016/j.solmat.2009.02.026
- Gugliermetti, F., Santarpia, L., & Bisegna, F. (2001). Integrated energy use analysis in office spaces. In R. Lamberts, C. Negrao, & J. Hensen (Eds.), Proceedings of the 7th International Conference Building Simulation (pp. 991-998).
- Guo, R., Gao, Y., Zhuang, C., Heiselberg, P., Levinson, R., Zhao, X., & Shi, D. (2020). Optimization of cool roof and night ventilation in office buildings: A case study in Xiamen, China. Renewable Energy, 147, 2279-2294. https://doi.org/10.1016/j.renene.2019.10.032
- Guo, R., Hu, Y., Liu, M., & Heiselberg, P. (2019). Influence of design parameters on the night ventilation performance in office buildings based on sensitivity analysis. Sustainable Cities and Society, 50, 101661. https://doi.org/10.1016/j.scs.2019.101661
- Gutiérrez, R. U., Du, J., Ferreira, N., Ferrero, A., & Sharples, S. (2019). Daylight control and performance in office buildings using a novel ceramic louvre system. Building and Environment, 151, 54-74. https://doi.org/10.1016/j.buildenv.2019.01.030
- Hawila, A. Al-W., Merabtine, A., Troussier, N., & Bennacer, R. (2019). Combined use of dynamic building simulation and metamodeling to optimize glass facades for thermal comfort. Building and Environment, 157, 47-63. https://doi.org/10.1016/j.buildenv.2019.04.027
- Hee, W. J., Alghoul, M. A., Bakhtyar, B., Elayeb, O., Shameri, M. A., Alrubaih, M. S., & Sopian, K. (2015). The role of window glazing on day lighting and energy saving in buildings. Renewable and Sustainable Energy Reviews, 42, 323-343. https://doi.org/10.1016/j.rser.2014.09.020
- Hitchcock, R. J., Mitchell, R., Yazdanian, M., Lee, E., & Huizenga, C. (2008). COMFEN: A commercial fenestration/façade design tool. Proceedings of SimBuild, 3(1), 246-252.
- Hoffmann, S., Lee, E. S., McNeil, A., Fernandes, L., Vidanovic, D., & Thanachareonkit, A. (2016). Balancing daylight, glare, and energy-efficiency goals: An evaluation of exterior coplanar shading systems using complex fenestration modeling tools. Energy and Buildings, 112(15), 279-298. https://doi.org/10.1016/j.enbuild.2015.12.009
- Hu, Y., Guo, R., & Heiselberg, P. K. (2020). Performance and control strategy development of a PCM enhanced ventilated window system by a combined experimental and numerical study. Renewable Energy, 155, 134-152. https://doi.org/10.1016/j.renene.2020.03.137
- Hu, Y., Heiselberg, P. K., & Guo, R. (2020). Ventilation cooling/heating performance of a PCM enhanced ventilated window–An experimental study. Energy and Buildings, 214, 109903. https://doi.org/10.1016/j.enbuild.2020.109903
- Huang, Y., Mankibi, M. E., Cantin, R., & Coillot, M. (2021). Application of fluids and promising materials as advanced inter-pane media in multi-glazing windows for thermal and energy performance improvement: A review. Energy and Buildings, 253, 111458. https://doi.org/10.1016/j.enbuild.2021.111458
- Ihara, T., Gao, T., Grynning, S., Jelle, B. P., & Gustavsen, A. (2015). Aerogel granulate glazing facades and their application potential from an energy saving perspective. Applied Energy, 142, 179-191. https://doi.org/10.1016/j.apenergy.2014.12.053
- Ihara, T., Grynning, S., Gao, T., Gustavsen, A., & Jelle, B. P. (2015). Impact of convection on thermal performance of aerogel granulate glazing systems. Energy and Buildings, 88, 165-173. https://doi.org/10.1016/j.enbuild.2014.12.001
- Ismail, K. A. R., & Henriquez, J. R. (2002). Parametric study on composite and PCM glass systems. Energy Conversion Management, 43(7), 973-993. https://doi.org/10.1016/S0196-8904(01)00083-8
- Ismail, K. A. R., & Henriquez, J. R. (2005). Two-dimensional model for the double glass naturally ventilated window. International Journal of Heat and Mass Transfer, 48, 461-475. https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.022
- Ismail, K. A. R., Lago, T. G. S., Lino, F. A. M., Mondlane, M. V., & Teles, M. P. R. (2021). Experimental investigation on ventilated window with reflective film and development of correlations. Solar Energy, 230, 421-434. https://doi.org/10.1016/j.solener.2021.10.061
- Jadhav, S. B., & Sarawade, P. B. (2024). Recent advances and prospective on the effect of processing parameters, additives, and applications of silica aerogel nanocomposites. European Polymer Journal, 206, 112776. https://doi.org/10.1016/j.eurpolymj.2024.112766
- Jelle, B. P., Hynd, A., Gustavsen, A., Arasteh, D., Goudey, H., & Hart, R. (2012). Fenestration of today and tomorrow: A state-of-the-art review and future research opportunities. Solar Energy Materials & Solar Cells, 96, 1-28. https://doi.org/10.1016/j.solmat.2011.08.010
- Jiang, Y., Li, N., Yongga, A., & Yan, W. (2022). Short-term effects of natural view and daylight from windows on thermal perception, health, and energy-saving potential. Building and Environment, 208, 108575. https://doi.org/10.1016/j.buildenv.2021.108575
- Kaasalainen, T., Makinen, A., Lehtinen, T., Moisio, M., & Vinha, J. (2020). Architectural window design and energy efficiency: Impacts on heating, cooling and lighting needs in Finnish climates. Journal of Building Engineering, 27(1), 100996. https://doi.org/10.1016/j.jobe.2019.100996
- Kalamees, T. (2004). IDA ICE: The simulation tool for making the whole building energy and HAM analysis. Annex, 41, 12-14.
- Kasim, N. F. M., Zaki, S. A., Ali, M. S. M., Ikegaya, N., & Razak, A. A. (2016). Computational study on the influence of different opening position on wind-induced natural ventilation in urban building of cubical array. Procedia Engineering, 169, 256-263. https://doi.org/10.1016/j.proeng.2016.10.031
- Kaushik, N., Saravanakumar, P., Dhanasekhar, S., Saminathan, R., Rinawa, M. L., Subbiah, R., Sharma, R., & Kumar, P. M. (2022). Thermal analysis of a double-glazing window using a nano-disbanded phase changing material (NDPCM). Materials Today: Proceedings, 62, 1702-1707. https://doi.org/10.1016/j.matpr.2021.11.537
- Ke, Y., Chen, J., Lin, G., Wang, S., Zhou, Y., Yin, J., Lee, P. S., & Long, Y. (2019). Smart windows: Electro-, thermo-, mechano-, photochromics, and beyond. Advanced Energy Materials, 9, 1902066. https://doi.org/10.1002/aenm.201902066
- Khaled, K., & Berardi, U. (2021). Current and future coating technologies for architectural glazing applications. Energy and Buildings, 244, 111022. https://doi.org/10.1016/j.enbuild.2021.111022
- Khetib, Y., Alotaibi, A. A., Alshahri, A. H., Rawa, M., Cheraghian, G., & Sharifpur, M. (2021). Impact of phase change material on the amount of emission in the double-glazed window frame for different window angles. Journal of Energy Storage, 44, 103320. https://doi.org/10.1016/j.est.2021.103320
- Khosravi, S. N., & Mahdavi, A. (2021). A CFD-based parametric thermal performance analysis of supply air ventilated windows. Energies, 14, 2420. https://doi.org/10.3390/en14092420
- Kim, J.-H., Kim, S.-M., & Kim, J.-T. (2017). Simulation performance of building wall with vacuum insulation panel. Procedia Engineering, 180, 1247-1255. https://doi.org/10.1016/j.proeng.2017.04.286
- Ko, W. H., Schiavon, S., Zhang, H., Graham, L. T., Brager, G., Mauss, I., & Lin, Y.-W. (2020). The impact of a view from a window on thermal comfort, emotion, and cognitive performance. Building and Environment, 175, 106779. https://doi:10.1016/j.buildenv.2020.106779
- Krstic-Furundzic, A., Vujosevic, M., & Petrovski, A. (2019). Energy and environmental performance of the office building façade scenarios. Energy, 183, 437-447. https://doi.org/10.1016/j.energy.2019.05.231
- Kumar, D., Alam, M., Memon, R. A., & Bhayo, B. A. (2022). A critical review for formulation and conceptualization of an ideal building envelope and novel sustainability framework for building applications. Cleaner Engineering and Technology, 11, 100555. https://doi.org/10.1016/j.clet.2022.100555
- Kvist, H. (1999). DEROB-LTHfor windows. Lund Institute of Technology. https://scholar.google.com/scholar_lookup?title=DEROBLTH+for+MS+Windows&author=H.+Kvist&journal=User+Manual%2C+Department+of+Building+Science&publication_year=1999
- Lago, T. G. S., Ismail, K. A. R., & Lino, F. A. M. (2019). Ventilated double glass window with reflective film: Modeling and assessment of performance. Solar Energy, 185, 72-88. https://doi.org/10.1016/j.solener.2019.04.047
- Lago, T., Ismail, K. A. R., & Lino, F. A. M. (2020). Natural airflow in reversible double glass window with reflective film for building applications. The Journal of Energy Engineering, 146(4). https://doi.org/10.1061/(ASCE)EY.1943-7897.0000682
- Lamy-Mendes, A., Pontinha, A. D. R., Alves, P., Santos, P., & Durães, L. (2021). Progress in silica aerogel-containing materials for buildings’ thermal insulation. Construction and Building Materials, 286, 122815. https://doi.org/10.1016/j.conbuildmat.2021.122815
- Lee, E. S., Matusiak, B. S., Geisler-Moroder, D., Selkowitz, S. E., & Heschong, L. (2022). Advocating for view and daylight in buildings: Next steps. Energy and Buildings, 265, 112079. https://doi.org/10.1016/j.enbuild.2022.112079
- Lee, H., Baek, S., & Lee, H. (2022). A study on the application of solar modules to light shelves to improve generation and day lighting efficiency. Energy and Buildings, 261, 111976. https://doi.org/10.1016/j.enbuild.2022.111976
- Leung, C. K., Lu, L., Liu, Y., Cheng, H. S., & Tse, J. H. (2020). Optical and thermal performance analysis of aerogel glazing technology in a commercial building of Hong Kong, Energy and Built Environment, 1(2), 215-223. https://doi.org/10.1016/j.enbenv.2020.02.001
- Li, C., & Tang, H. (2024). Phase change material window for dynamic energy flow regulation: Review. Renewable and Sustainable Energy Reviews, 189, 113937. https://doi.org/10.1016/j.rser.2023.113937
- Li, C., Li, C., Lyu, Y., & Qiu, Z. (2020). Performance of double-circulation water-flow window system as solar collector and indoor heating terminal. Building Simulation, 13, 575-584. https://doi.org/10.1007/s12273-019-0600-y
- Li, C., Tan, J., Chow, T.-T., & Qiu, Z. (2015). Experimental and theoretical study on the effect of window films on building energy consumption. Energy and Buildings, 102, 129-138. https://doi.org/10.1016/j.enbuild.2015.04.025
- Li, C., Tang, H., Ding, J., & Lyu, Y. (2019). Numerical research on thermal performance of water-flow window as hospital curtain-wall. E3S Web of Conferences, 111, 1059. https://doi.org/10.1051/e3sconf/201911101059
- Li, D., Ma, Y., Zhang, S., Yang, R., Zhang, C., & Liu, C. (2022). Photothermal and energy performance of an innovative roof based on silica aerogel-PCM glazing systems. Energy Conversion and Management, 262, 115567. https://doi.org/10.1016/j.enconman.2022.115567
- Li, D., Wu, Y., Liu, C., Zhang, G., & Arici, M. (2018). Numerical investigation of thermal and optical performance of window units filled with nanoparticle enhanced PCM. International Journal Heat Mass Transfer, 125, 1321-1332. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.152
- Li, D., Wu, Y., Wang, B., Liu, C., & Arici, M. (2020). Optical and thermal performance of glazing units containing PCM in buildings: A review. Construction and Buildings Materials, 233, 117327. https://doi.org/10.1016/j.conbuildmat.2019.117327
- Li, D., Yang, R., Arici, M., Wang, B., Tunçbilek, E., Wu, Y., Liu, C., Ma, Z., & Ma, Y. (2022). Incorporating phase change materials into glazing units for building applications: Current progress and challenges. Applied Thermal Engineering, 210, 118374. https://doi.org/10.1016/j.applthermaleng.2022.118374
- Li, D., Zhang, C., Li, Q., Liu, C., & Wu, Y. (2019). Thermal performance evaluation of glass window combining silica aerogels and phase change materials for cold climate of China. Applied Thermal Engineering, 165, 114547. https://doi.org/10.1016/j.applthermaleng.2019.114547
- Li, S., Sun, G., Zou, K., & Zhang, X. (2016). Experimental research on the dynamic thermal performance of a novel triple-pane building window filled with PCM. Sustainable Cities and Society, 27, 15-22. https://doi.org/10.1016/j.scs.2016.08.014
- Li, S., Zhong, K., Zhou, Y., & Zhang, X. (2014). Comparative study on the dynamic heat transfer characteristics of PCM-filled glass window and hollow glass window. Energy and Buildingss, 85, 483-492. https://doi.org/10.1016/j.enbuild.2014.09.054
- Li, Y., Darkwa, J., & Su, W. (2019). Investigation on thermal performance of an integrated phase change material blind system for double skin façade buildings. Energy Proceeding, 158, 5116-5123. https://doi.org/10.1016/j.egypro.2019.01.688
- Liu, C., Zhang, G., Arici, M., Bian, J., & Li, D. (2019). Thermal performance of non-ventilated multilayer glazing facades filled with phase change material. Solar Energy, 177, 464-470. https://doi.org/10.1016/j.solener.2018.11.044
- Liu, L., Hammami, N., Trovalet, L., Bigot, D., Habas, J.-P., & Malet-Damour, B. (2022). Description of phase change materials (PCMs) used in buildings under various climates: A review. Journal of Energy Storage, 56, 105760. https://doi.org/10.1016/j.est.2022.105760
- Lolli, N., & Andresen, I. (2016). Aerogel vs. argon insulation in windows: A greenhouse gas emissions analysis. Building and Environment, 101, 64-76. https://doi.org/10.1016/j.buildenv.2016.03.001
- Lyu, Y., Wu, X., Li, C., Su, H., & He, L. (2019). Numerical analysis on the effectiveness of warm water supply in water flow window for room heating. Solar Energy, 177, 347-354. https://doi.org/10.1016/j.solener.2018.11.033
- Lyu, Y.-L., Liu, W.-J., Su, H., & Wu, X. (2019). Numerical analysis on the advantages of evacuated gap insulation of vacuum-water flow window in building energy saving under various climates. Energy, 175, 353-364. https://doi.org/10.1016/j.energy.2019.03.101
- Maghrabie, H. M., Abdelkareem, M. A., Elsaid, K., Sayed, E. T., Radwan, A., Rezk, H., Wilberforce, T., Abo-Khalil, A. G., & Olabi, A. G. (2022). A review of solar chimney for natural ventilation of residential and non-residential buildings. Sustainable Energy Technologies and Assessments, 52, 102082. https://doi.org/10.1016/j.seta.2022.102082
- Makaremi, N., Schiavoni, S., Pisello, A. L., & Cotana, F. (2018). Effects of surface reflectance and lighting design strategies on energy consumption and visual comfort. Indoor and Built Environment, 28(4) 552-563. https://doi.org/10.1177/1420326X18793170
- Mateus, R., Pereira, J. M. C., & Pinto, A. (2023). Natural ventilation of large air masses: Experimental and numerical techniques review. Energy and Buildings, 291, 13120. https://doi.org/10.1016/j.enbuild.2023.113120
- Mazzeo, D., Matera, N., Cornaro, C., Oliveti, G., Romagnoni, P., & De Santoli, L. (2020). EnergyPlus, IDA ICE and TRNSYS predictive simulation accuracy for building thermal behaviour evaluation by using an experimental campaign in solar test boxes with and without a PCM module. Energy and Buildingss, 212. https://doi.org/10.1016/J.ENBUILD.2020.109812
- Meti, P., Wang, Q., Mahadik, D. B., Lee, K.-Y., Gong, Y.-D., & Park, H.-H. (2023). Evolutionary progress of silica aerogels and their classification based on composition: An overview. Nanomaterials, 13(9), 1498. https://doi.org/10.3390/nano13091498
- Michael, M., Favoino, F., Jin, Q., Luna-Navarro, A., & Overend, M. (2023). A systematic review and classification of glazing technologies for building façades. Energies, 16(14) 5357. https://doi.org/10.3390/en16145357
- Moghaddam, S. A., Serra, C., Silva, M. G., & Simões, N. (2023). Comprehensive review and analysis of glazing systems towards nearly zero-Energy and Buildingss: Energy performance, thermal comfort, cost-effectiveness, and environmental impact perspectives. Energies, 16, 6283. https://doi.org/10.3390/en16176283
- Mohammad, A. K., & Ghosh, A. (2023). Exploring energy consumption for less energy-hungry building in UK using advanced aerogel window. Solar Energy, 253(15) 389-400. https://doi.org/10.1016/j.solener.2023.02.049
- Moretti, E., & Belloni, E. (2015). Evaluation of energy, thermal, and day lighting performance of solar control films for a case study in moderate climate. Building and Environment, 94, 183-195. https://doi.org/10.1016/j.buildenv.2015.07.031
- Moretti, E., Zinzi, M., Merli, F., & Buratti, C. (2018). Optical, thermal, and energy performance of advanced polycarbonate systems with granular aerogel. Energy and Buildings 166, 407-417. https://doi.org/10.1016/j.enbuild.2018.01.057
- Mujeebu, M. A. (2019). Nano aerogel windows and glazing units for buildings’ energy efficiency. In Nanotechnology in eco-efficient construction (pp. 417-438). https://doi.org/10.1016/B978-0-08-102641-0.00018-9
- Mustafa, M. N., Abdah, M. A. A. M., Arshid, N., Moreno-Rangel, A. A., Radwan, A., & Mohammad, K. (2023). Smart window technology and its potential for net-zero buildings: A review. Renewable and Sustainable Energy Reviews, 181, 113355. https://doi.org/10.1016/j.rser.2023.113355
- Nasrollahi, N., & Shokri, E. (2016). Daylight illuminance in urban environments for visual comfort and energy performance. Renewable and Sustainable Energy Reviews, 66, 861-874. https://doi.org/10.1016/j.rser.2016.08.052
- Navaratnam, S., Rajeev, P., & Sanjayan, J. (2023). Study of technological advancement and challenges of façade system for sustainable building: Current design practice. Sustainability, 15, 14319. https://doi.org/10.3390/su151914319
- Nomura, M., & Hiyama, K. (2017). A review: Natural ventilation performance of office buildings in Japan. Renewable and Sustainable Energy Reviews, 74, 746-754. https://doi.org/10.1016/j.rser.2017.02.083
- Oh, M., & Park, J. (2019). Evaluation of building energy and daylight performance according to applying electrochromic and pdcl (polymer dispersed liquid crystal) to office building in South Korea. International Journal of Sustainable Building Technology and Urban Development, 10(4), 227-240. https://doi.org/10.22712/susb.20190024
- Okokpujie, I. P., Essien, V., Ikumapayi, O. M., Nnochiri, E. S., Okokpujie, K., & Akinlabi, E. T. (2022). An overview of thermal insulation material for sustainable engineering building application. International Journal of Design & Nature and Ecodynamics, 17(6), 831-841. https://doi.org/10.18280/ijdne.170603
- Omrani, S., Garcia-Hansen, V., Capra, B. R., & Drogemuller, R. (2017). Effect of natural ventilation mode on thermal comfort and ventilation performance: Full-scale measurement. Energy and Buildings, 156, 1-16. https://doi.org/10.1016/j.enbuild.2017.09.061
- Onubogu, N. O., Chong, K.-K., & Tan, M.-H. (2021). Review of active and passive technologies for sustainable building. International Journal of Photoenergy, 2021, 8802691. https://doi.org/10.1155/2021/8802691
- Ozel, M., & Ozel, C. (2020). Effect of window-to-wall-area ratio on thermal performance of building wall materials in Elazig, Turkey. PLoS ONE, 15(9), e0237797. https://doi.org/10.1371/journal.pone.0237797
- Palme, M., Carrasco, C., Ángel Gálvez, M., & Inostroza, L. (2017). Natural ventilation: A mitigation strategy to reduce overheating in buildings under urban heat island effect in South American cities. IOP Conference Series: Materials Science and Engineering Open Access, 245(7), 072046. https://doi.org/10.1088/1757-899X/245/7/072046
- Parale, V. G., Lee, K.-Y., & Park, H.-H. (2017). Flexible and transparent silica aerogels: An overview. Journal of the Korean Ceramic Society, 54(3) 184-199. https://doi.org/10.4191/kcers.2017.54.3.12
- Pedersen, C. O., Fisher, D. E., Liesen, R. J., & Strand, R. K. (2003). ASHRAE toolkit for building load calculations/discussion. ASHRAE Transition, 109, 583.
- Pereira, J., Gomes, M. G., Rodrigues, A. M., Teixeira, H., & Almeida, M. (2020). Small-scale field study of window films’ impact on daylight availability under clear sky conditions. Journal of Facade Designer and Engineering, 8, 65-84. https://doi.org/10.7480/jfde.2020.1.4785
- Pereira, J., Rivero, C. C., Gomes, M. G., Rodrigues, A. M., & Marrero, M. (2021). Energy, environmental and economic analysis of windows’ retrofit with solar control films: A case study in mediterranean climate. Energy, 233, 121083. https://doi.org/10.1016/j.energy.2021.121083
- Pereira, J., Teixeira, H., Gomes, M. G., & Rodrigues, A. M. (2022). Performance of solar control films on building glazing: A literature review. Applied Science, 12, 5923. https://doi.org/10.3390/app12125923
- Petersen, S., & Svendsen, S. (2010). Method and simulation program informed decisions in the early stages of building design. Energy and Buildingss, 42, 1113-1119. https://doi.org/10.1016/j.enbuild.2010.02.002
- Phuong, N. T. K., Tamrazyan, A. G., Kien, N. T., & Luong, P. V. (2019). Window to floor ratio in the design stage in considering to visual-thermal comfort and safety in building. IOP Conference Series: Materials Science and Engineering, 675, 012010. https://doi.org/10.1088/1757-899X/675/1/012010
- Piffer, Y., Lamberts, R., Mizgier, M. O., & Güths, S. (2021). A review on windows incorporating water-based liquids. Solar Energy, 214, 606-631. https://doi.org/10.1016/j.solener.2020.11.072
- Piselli, C., Prabhakar, M., de Gracia, A., Saffari, M. Pisello, A. L., & Cabeza L. F. (2020). Optimal control of natural ventilation as passive cooling strategy for improving the energy performance of building envelope with PCM integration. Renewable Energy, 162, 171-181. https://doi.org/10.1016/j.renene.2020.07.043
- Pont, U., Wölzl, M., Schober, P., Khosravi, S. N., Schuss, M., & Mahdavi, A. (2019). Recent progress in the development of windows with vacuum glass. MATEC Web of Conferences, 282, 02020. https://doi.org/10.1051/matecconf/201928202020
- Preet, S., Mathur, J., & Mathur, S. (2022). Influence of geometric design parameters of double skin façade on its thermal and fluid dynamics behavior: A comprehensive review. Solar Energy, 236, 249-279. https://doi.org/10.1016/j.solener.2022.02.055
- Prince, A. S. H. (2021). A comprehensive review of energy-efficiency of ventilation system using artificial intelligence. Renewable and Sustainable Energy Reviews, 146(2021), 111153. https://doi.org/10.1016/j.rser.2021.111153
- Qahtan, A., Keumala, N., Rao, S. P., & Abdul-Samad, Z. (2011). Experimental determination of thermal performance of glazed façades with water film, under direct solar radiation in the tropics. Building and Environment, 46, 2238-2246. https://doi.org/10.1016/j.buildenv.2011.05.001
- Rahnama, S., Sadeghian, P., Nielsen, P. V., Zhang, C., Sadrizadeh, S., & Afshari, A. (2020). Cooling capacity of diffuse ceiling ventilation system and the impact of heat load and diffuse panel distribution. Building and Environment, 185, 107290. https://doi.org/10.1016/j.buildenv.2020.107290
- Rallapalli, H. S. (2010). A comparison of EnergyPlus and eQUEST whole building energy simulation results for a medium sized office building. State University of Arizona. https://keep.lib.asu.edu/items/149515
- Rashidzadeh, & Matin, N. H. (2023). A comparative study on smart windows focusing on climate-based energy performance and users’ comfort attributes. Sustainability, 15, 2294. https://doi.org/10.3390/su15032294
- Rathnayake, U., Lau, D., & Chow, C. L. (2020). Review on energy and fire performance of water wall systems as a green building façade. Sustainability, 12, 8713. https://doi.org/10.3390/su12208713
- Remion, G., Moujalled, B., Mankibi, M., Jobert, R., & Deleersnyder, L. (2018). Assessing the performance of natural ventilation systems: A review of existing methods. In Proceedings of the 39th AIV Conference “Smart Ventilation for Buildings”.
- Rezaei, S. D., Shannigrahi, S., & Ramakrishn, S. (2017). A review of conventional, advanced, and smart glazing technologies and materials for improving indoor environment. Solar Energy Materials & Solar Cells, 159, 26-51. https://doi.org/10.1016/j.solmat.2016.08.026
- Romero, X., & Hernández, J. A. (2017). Spectral problem for water flow glazings. Energy and Buildings, 145, 67-78. https://doi.org/10.1016/j.enbuild.2017.03.013
- Saadatjoo, P., Mahdavinejad, M., & Armanshahr, A. Z. (2019). Porosity rendering in high-performance architecture: Wind-driven natural ventilation and porosity distribution patterns. Architecture & Urban Development, 12(26), 73-87. https://doi.org/10.22034/AAUD.2019.89057
- Saber, A. (2021). Effects of window-to-wall ratio on energy consumption: Application of numerical and ANN approaches. Journal of Soft Computing in Civil Engineering, 5(4), 41-56. https://doi.org/10.22115/SCCE.2021.281977.1299
- Sadeghian, P., Rahnama, S., Afshari, A., & Sadrizadeh, S, (2022). The role of design parameters on the performance of diffuse ceiling ventilation systems–Thermal comfort analyses for indoor environment. Advances in Building Energy Research, 16(6) 806-824. https://doi.org/10.1080/17512549.2022.2109211
- Sadko, K., & Piotrowski, J. Z. (2022). Numerical investigations of the thermal properties of window systems: A review. Structure and Environment, 14(4), 126-141. https://doi.org/10.30540/sae-2022-015
- Sadooghi, P., & Kherani, N. P. (2018). Thermal analysis of triple and quadruple windows using partitioning radiant energy veils with different physical and optical properties. Solar Energy, 174, 1163-1168. https://doi.org/10.1016/j.solener.2018.07.034
- Salcido, J. C., Raheem, A. A., & Issa, R. R. A. (2016). From simulation to monitoring: Evaluating the potential of mixed-mode ventilation (MMV) systems for integrating natural ventilation in office buildings through a comprehensive literature review. Energy and Buildings, 127, 1008-1018. https://doi.org/10.1016/j.enbuild.2016.06.054
- Sayadi, S., Hayati, A., & Salmanzadeh, M. (2021). Optimization of window-to-wall ratio for buildings located in different climates: An IDA-indoor climate and energy simulation study. Energies, 14, 1974. https://doi.org/10.3390/en14071974
- Shahrzad, S., & Umberto, B. (2022). Parametric optimization of multifunctional integrated climate-responsive opaque and ventilated façades using CFD simulations. Applied Thermal Engineering, 204, 117923. https://doi.org/10.1016/j.applthermaleng.2021.117923
- Shao, T., Jin, H., Zheng, W., & Wang, J. (2020). The influence of window-wall ratio on heating energy consumption of rural house in severe cold regions of China. E3S Web of Conferences, 173, 03008. https://doi.org/10.1051/e3sconf/202017303008
- Shen, H., & Tzempelikos, A. (2017). Daylight-linked synchronized shading operation using simplified model-based control. Energy and Buildings, 145(15) 200-212. https://doi.org/10.1016/j.enbuild.2017.04.021
- Silva, T., Vicente, R., & Rodrigues, F. (2016). Literature review on the use of phase change materials in glazing and shading solutions. Renewable and Sustainable Energy Reviews, 53(1) 515-535. https://doi.org/10.1016/j.rser.2015.07.201
- Skaff, M. C., & Gosselin, L. (2014). Show more summer performance of ventilated windows with absorbing or smart glazings. Solar Energy, 105, 2-13. https://doi.org/10.1016/j.solener.2013.08.025
- Solgi, E., Hamedani, Z., Fernando, R., Kari, B. M., & Skates, H. (2019). A parametric study of phase change material behaviour when used with night ventilation in different climatic zones. Building Environment, 147, 327-336. https://doi.org/10.1016/j.buildenv.2018.10.031
- Solgi, E., Hamedani, Z., Fernando, R., Skates, H., & Orji, N. E. (2018). A literature review of night ventilation strategies in buildings. Energy and Buildings, 173, 337-352. https://doi.org/10.1016/j.enbuild.2018.05.052
- Souza, L. C. O., Souza, H. A., & Rodrigues, E. F. (2018). Experimental and numerical analysis of a naturally ventilated double-skin façade. Energy and Buildings, 165, 328-339. https://doi.org/10.1016/j.enbuild.2018.01.048
- Sun, Y., Wu, Y., & Wilson, R. (2018). A review of thermal and optical characterisation of complex window systems and their building performance prediction. Applied Energy, 222, 729-747. https://doi.org/10.1016/j.apenergy.2018.03.144
- SUNREL. (2022). National Renewable Energy Laboratory. https://www.nrel.gov/docs/fy02osti/30193.pdf
- Sureguard. (2023). Sureguard window films. https://www.sureguard.co.uk/window-film/solar-film/
- Tällberg, R., Jelle, B. P., Loonen, R., Gao, T., & Hamdy, M. (2019). Comparison of the energy saving potential of adaptive and controllable smart windows. Solar Energy Materials and Solar Cells, 200, 109828. https://doi.org/10.1016/j.solmat.2019.02.041
- Tao, Y., Yan, Y., Chew, M. Y. L., Tu, J., & Shi, L. (2023). A theoretical model of natural ventilation enhanced by solar thermal energy in double-skin façade. Energy, 276, 127534. https://doi.org/10.1016/j.energy.2023.127534
- Teixeira, H., Gomes, M. G., Rodrigues, A. M., & Pereira, J. (2020). Thermal and visual comfort, energy use and environmental performance of glazing systems with solar control films. Building and Environment, 168, 106474. https://doi.org/10.1016/j.buildenv.2019.106474
- Tong, S. W., Goh, W. P., Huang, X., & Jiang, C. (2021). A review of transparent-reflective switchable glass technologies for building facades. Renewable and Sustainable Energy Reviews, 152, 111615. https://doi.org/10.1016/j.rser.2021.111615
- TRANSSOLAR Energietechnic GmbH. (2012). TRNBuild 2.0. https://transsolar.com/
- Troup, L., Phillips, R., Eckelman, M. J., & Fannon, D. (2019). Effect of window-to-wall ratio on measured energy consumption in US office buildings. Energy and Buildings, 203, 109434. https://doi.org/10.1016/j.enbuild.2019.109434
- Tukel, M., Mumcuoglu, K., Arici, M., & Karabay, H. (2019). Analysis of fluid flow and heat transfer characteristics in multiple glazing roofs with a special emphasis on the thermal performance. Applied Thermal Engineering, 148, 694-703. https://doi.org/10.1016/j.applthermaleng.2018.11.089
- Uddin, M. M., Jie, J., Wang, C., Zhang, C., & Ke, W. (2023). A review on photovoltaic combined vacuum glazing: Recent advancement and prospects. Energy and Buildings, 286, 112939. https://doi.org/10.1016/j.enbuild.2023.112939
- United States Department of Energy. (2022). United States Department of Energy. http://www.energy.gov/
- University of Illinois. (1992). EnergyPlus: Energy simulation program. LBNL. https://simulationresearch.lbl.gov/dirpubs/46002.pdf
- University of Wisconsin-Madison. (1975). A transient simulation program. Solar Energy Laboratory. https://search.library.wisc.edu/catalog/999800551102121
- University of Wisconsin-Madison. (2012a). A transient system simulation program. Solar Energy Laboratory. http://www.trnsys.com/
- University of Wisconsin-Madison. (2012b). Multi zone building modeling with type 56 and TRN-build. Solar Energy Laboratory. https://web.mit.edu/parmstr/Public/Documentation/06-MultizoneBuilding.pdf
- Uribe, D., & Vera, S. (2021). Assessment of the effect of phase change material (PCM) glazing on the energy consumption and indoor comfort of an office in a semiarid climate. Applied Science, 11, 9597. https://doi.org/10.3390/app1120959
- VE-Pro. (2011). Integrated environmental solutions. http://www.iesve.com/software/ve-proin
- Vlachokostas, A., & Madamopoulos, N. (2017). Daylight and thermal harvesting performance evaluation of a liquid filled prismatic façade using the radiance five-phase method and EnergyPlus. Building and Environment, 126, 396-409. https://doi.org/10.1016/j.buildenv.2017.10.017
- Walton, G. N. (1989). AIRNET–A computer program for building airflow network modeling, NISTIR 89-4072. National Institute of Standards and Technology. https://doi.org/10.6028/NIST.IR.89-4072
- Wieprzkowicz, A., & Heim, D. (2018). Thermal performance of PCM-glazing unit under moderate climatic conditions. In Proceedings of the 7th International Buildings Physics Conference. https://doi.org/10.14305/ibpc.2018.be-10.06
- William, J. (2018). Strategies for deploying virtual representations of the built environment. https://www.esru.strath.ac.uk/Courseware/ESP-r/tour/Downloads/strategiesmay2018.pdf
- Winkelmann, F. C., & Selkowitz, S. E. (1985). Day lighting simulation in the DOE-2 building energy analysis program. Energy and Buildings, 8, 271-286. https://doi.org/10.1016/0378-7788(85)90033-7
- Winkelmann, F., Birdsall, B., Buhl, W., Ellington, K., Erdem, A., Hirsch, J., & Gates, S. (1993). DOE-2 supplement. Lawrence Berkeley Laboraty.
- Wu, S., Sun, H., Duan, M., Mao, H., Wu, Y., Zhao, H., & Lin, B. (2023). Applications of thermo chromic and electro chromic smart windows: Materials to buildings. Cell Reports Physical Science, 4, 101370. https://doi.org/10.1016/j.xcrp.2023.101370
- Wu, W., Yoon, N., Tong, Z., Chen, Y., Lv, Y., Ærenlund, T., & Benner, J. (2019). Diffuse ceiling ventilation for buildings: A review of fundamental theories and research methodologies. Journal Cleaner Production, 211, e1619. https://doi.org/10.1016/j.jclepro.2018.11.148
- Xamán, J., Olazo-Gómez, Y., Zavala-Guillén, I., Hernández-Pérez, I., Aguilar, J. O., & Hinojosa, J. F. (2017). Thermal evaluation of a room coupled with a double glazing window with/without a solar control film for Mexico. Applied Thermal Engineering, 110, 805-820. https://doi.org/10.1016/j.applthermaleng.2016.08.156
- Xu, Z., Chen, Y., Lin, P., & Zhu, X. (2022). Leak proof phase-change glass window: Characteristics and performance. Building and Environment, 218, 109088. https://doi.org/10.1016/j.buildenv.2022.109088
- Xuanjie, W., & Narayan, S. (2021). Thermochromic materials for smart windows: A state-of-art review. Frontiers in Energy Research, 9. https://doi.org/10.3389/fenrg.2021.800382
- Yang, B., Melikov, A. K., Kabanshi, A., Zhang, C., Bauman, F. S., Cao, G., Awbi, H., Wigo, H., Niu, J., Cheong, K. W. D., Tham, K. W., Sandberg, M., Nielsen, P. V., Kosonen, R., Yao, R., Kato, S., Sekhar, S. C., Schiavon, S., Karimipanah, T., Li, X., & Lin, Z. (2019). A review of advanced air distribution methods–Theory, practice, limitations and solutions. Energy and Buildings, 202, 109359. https://doi.org/10.1016/j.enbuild.2019.109359
- Yang, R., Li, D., Wei W., & Wang, F. (2020). A mie optimization model to determine optical properties of PCM based nanofluids for solar thermal applications of glazing window. International Journal for Light and Electronic Optics, 212, 164664. https://doi.org/10.1016/j.ijleo.2020.164664
- Yang, S., Fiorito, F., Prasad, D., Sproul, A., & Cannavale, A. (2021). A sensitivity analysis of design parameters of BIPV/T-DSF in relation to building energy and thermal comfort performances. Journal of Building Engineering, 41, 102426. https://doi.org/10.1016/j.jobe.2021.102426
- Yang, X., Li, D., Yang, R., Ma, Y., Tong, X., Wu, Y., & Arici, M. (2023). Comprehensive performance evaluation of double-glazed windows containing hybrid nanoparticle-enhanced phase change material. Applied Thermal Engineering, 223, 119976. https://doi.org/10.1016/j.applthermaleng.2023.119976
- Yao, J. (2014). An investigation into the impact of movable solar shades on energy, indoor thermal and visual comfort improvements. Building and Environment, 71(1) 24-32. https://doi.org/10.1016/j.buildenv.2013.09.011
- Yu, T., Heiselberg, P., Lei, B., Pomianowski, M., & Zhang, C. (2015). A novel system solution for cooling and ventilation in office buildings: A review of applied technologies and a case study. Energy and Buildings, 90(1) 142-155. https://doi.org/10.1016/j.enbuild.2014.12.057
- Yu, X., & Su, Y. (2015). Daylight availability assessment and its potential energy saving estimation–A literature review. Renewable and Sustainable Energy Reviews, 52, 494-503. https://doi.org/10.1016/j.rser.2015.07.142
- Zaniboni, L., & Rossano, A. (2022). Natural and mechanical ventilation concepts for indoor comfort and well-being with a sustainable design perspective: A systematic review. Natural Buildings, 12(11), 1983. https://doi.org/10.3390/buildings12111983
- Zerroug, A., & Dzelzitis, E., (2015). Analysis of results of energy consumption simulation with eQUEST and energyplus. In Proceedings of the 5th International Conference Civil Engineering.
- Zhang, C., Gang, W., Wang, J., Xu, X., & Du, Q. (2019). Numerical and experimental study on the thermal performance improvement of a triple glazed window by utilizing low-grade exhaust air. Energy, 167, 1132-1143. https://doi.org/10.1016/j.energy.2018.11.076
- Zhang, C., Heiselberg, P., & Nielsen, P. V. (2014). Diffuse ceiling ventilation–A review. International Journal of Ventilation, 13(1), 49-64. https://doi.org/10.1080/14733315.2014.11684036
- Zhang, H., Yang, D., Tam, V. W. Y., Ta, Y., Zhang, G., Setunge, S., & Shi, L. (2021). A critical review of combined natural ventilation techniques in sustainable buildings. Renewable and Sustainable Energy Reviews, 141, 110795. https://doi.org/10.1016/j.rser.2021.110795
- Zhang, S., Hu, W., Li, D., Zhang, C., Arici, M., Yildiz, C., Zhang, X., & Ma, Y. (2021). Energy efficiency optimization of PCM and aerogel-filled multiple glazing windows. Energy, 222, 119916. https://doi.org/10.1016/j.energy.2021.119916
- Zhong, H. Y., Sun, Y., Shang, J., Qian, F. P., Zhao, F. Y., Kikumoto, H., Bescos, C. J., & Liu, X. (2022). Single-sided natural ventilation in buildings: A critical literature review. Building Environment, 212, 108797. https://doi.org/10.1016/j. buildenv.2022.108797
How to cite this article
APA
Ismail, K. A. R., Lino, F. A. M., Henríquez, J. R., Teggar, M., Laouer, A., Salinas, C. T., & Rodríguez, D. (2024). Contribution of advanced windows and façades to buildings decarbonization: A comprehensive review. European Journal of Sustainable Development Research, 8(2), em0258. https://doi.org/10.29333/ejosdr/14580
Vancouver
Ismail KAR, Lino FAM, Henríquez JR, Teggar M, Laouer A, Salinas CT, et al. Contribution of advanced windows and façades to buildings decarbonization: A comprehensive review. EUR J SUSTAIN DEV RES. 2024;8(2):em0258. https://doi.org/10.29333/ejosdr/14580
AMA
Ismail KAR, Lino FAM, Henríquez JR, et al. Contribution of advanced windows and façades to buildings decarbonization: A comprehensive review. EUR J SUSTAIN DEV RES. 2024;8(2), em0258. https://doi.org/10.29333/ejosdr/14580
Chicago
Ismail, Kamal A. R., Fátima A. M. Lino, Jorge R. Henríquez, Mohamed Teggar, Abdelghani Laouer, Carlos T. Salinas, and Daniel Rodríguez. "Contribution of advanced windows and façades to buildings decarbonization: A comprehensive review". European Journal of Sustainable Development Research 2024 8 no. 2 (2024): em0258. https://doi.org/10.29333/ejosdr/14580
Harvard
Ismail, K. A. R., Lino, F. A. M., Henríquez, J. R., Teggar, M., Laouer, A., Salinas, C. T., and Rodríguez, D. (2024). Contribution of advanced windows and façades to buildings decarbonization: A comprehensive review. European Journal of Sustainable Development Research, 8(2), em0258. https://doi.org/10.29333/ejosdr/14580
MLA
Ismail, Kamal A. R. et al. "Contribution of advanced windows and façades to buildings decarbonization: A comprehensive review". European Journal of Sustainable Development Research, vol. 8, no. 2, 2024, em0258. https://doi.org/10.29333/ejosdr/14580