Abstract
Orange peels are considered a waste, and the increase in cultivation and processing of oranges tends to increase waste in society. This work is designed to convert waste to wealth by investigating the potential of biodiesel production from orange peels and its suitability as an alternative fuel in compression ignition (CI) engines. Steam distillation pilot plant was used to extract oil from the orange peels, 1.27% was its maximum oil yield recovery. The oil was transesterified using methanol at a 6:1 molar ratio with 0.70% sodium hydroxide as the catalyst at 55 oC for 60 minutes and 96.00% biodiesel yield recovery was obtained. The biodiesel properties were found with density of 872 kg/m3, viscosity of 1.9 cSt, pH value of 7.6, calorific value of 38.4 MJ/kg, and flash point of 84 oC. The biodiesel was blended with diesel at different volumes, compared with pure diesel, and run on a CI engine. B20 (20.00% biodiesel, 80.00% diesel) has the optimum brake-specific fuel consumption rate and brake thermal efficiency and are respectively 9.08% lower and 11.99% higher than petroleum diesel. B15 (15.00% biodiesel, 85.00% diesel) has the optimum exhaust temperature and is 10.37% lower than diesel. B10 (10.00% biodiesel, 90.00% diesel) has the optimum carbon monoxide and carbon dioxide emissions and are 58.07% and 43.70% lower respectively than petroleum diesel.
License
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Article Type: Research Article
EUR J SUSTAIN DEV RES, Volume 7, Issue 3, 2023, Article No: em0224
https://doi.org/10.29333/ejosdr/13351
Publication date: 01 Jul 2023
Online publication date: 05 Jun 2023
Article Views: 925
Article Downloads: 1459
Open Access References How to cite this article